प्रश्नपुस्तिका क्रमांक BOOKLET No. 2018

प्रश्नपुस्तिका - I

Y11 संच क्र.

ेंदाची संकेताक्षरे

A

106457

पेपर क्र. - 1 कृषि विज्ञान

वेळ:1 (एक) तास

एकूण प्रश्न : 100 एकूण गूण : 200

शेवटचा अंक

सूचना

(1) सदर प्रश्नपुस्तिकेत 100 अनिवार्य प्रश्न आहेत. उमेदवारांनी प्रश्नांची उत्तरे लिहिण्यास सुरुवात करण्यापूर्वी या प्रश्नपुस्तिकेत सर्व प्रश्न आहेत किंवा नाहीत याची खात्री करून घ्यावी. असा तसेच अन्य काही दोष आढळल्यास ही प्रश्नपुस्तिका समवेक्षकांकडून लगेच बदलून घ्यावी.

(2) आपला परीक्षा-क्रमांक ह्या चौकोनांत न विसरता बॉलपेनने लिहावा.

- (3) वर छापलेला प्रश्नपुस्तिका क्रमांक तुमच्या उत्तरपत्रिकेवर विशिष्ट जागी उत्तर त्रिकेगील सूचनेप्रमाणे न विसरता नमूद करावा.
- (4) या प्रश्नपुस्तिकेतील प्रत्येक प्रश्नाला 4 पर्यायी उत्तरे सुचिवली असून त्याना 1, 2, 3 आणि 4 असे क्रमांक दिलेले आहेत. त्या चार उत्तरांपैकी सर्वात योग्य उत्तराचा क्रमांक उत्तरपत्रिकेवरील र चनेप्रमाणे तुमच्या उत्तरपत्रिकेवर नमूद करावा. अशा प्रकारे उत्तरपत्रिकेवर उत्तरक्रमांक नमूद करताना तो संबंधित प्रश्नक्रणकाणमार आयांकित करून दर्शविला जाईल याची काळजी घ्यावी. ह्याकरिता फक्त काळ्या शाईचे बॉलपेन वापरावे, पे दिल वा शाईचे पेन वापरू नये.
- (5) सर्व प्रश्नांना समान गुण आहेत. यास्तव सर्व प्रश्नांचा उत्तो द्यावीत. घाईमुळे चुका होणार नाहीत याची दक्षता घेऊनच शक्य तितक्या वेगाने प्रश्न सोडवावेत. क्रमाने प्रश्न सोडिंगो श्रेयस्कर आहे पण एखादा प्रश्न कठीण वाटल्यास त्यावर वेळ न घालिता पुढील प्रश्नाकडे वळाचे. नशा एकार शवटच्या प्रश्नापर्यंत पोहोचल्यानंतर वेळ शिल्लक राहिल्यास कठीण म्हणून वगळलेल्या प्रश्नांकडे परतणे सोईस्कर ठर
- (6) उत्तरपत्रिकेत एकदा नमूद केले । उत्तर खोडता यणार नाही. नमूद केलेले उत्तर खोडून नव्याने उत्तर दिल्यास ते तपासले जाणार नाही.
- (7) प्रस्तुत परिक्षेच्या उत्त पत्रिकांचे मूल्यांकन करताना उमेदवाराच्या उत्तरपत्रिकेतील योग्य उत्तरांनाच गुण दिले जातील. तसेच ''उमेदवाराने वस्तुनिष्ट बहुपर्यायी स्वरूपाच्या प्रश्नांची दिलेल्या चार उत्तरापैकी सर्वात योग्य उत्तरेच उत्तरपत्रिकेत नमूद करावीत. अयथ त्यांच्या उत्तरपत्रिकेत सोडविलेल्या प्रत्येक चार चुकीच्या उत्तरांसाठी एका प्रश्नाचे गुण वजा करण्यात येतील''.

ताकीद

ह्या प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपेपयंत ही प्रश्नपुस्तिका आयोगाची मालमत्ता असून ती परीक्षाकक्षात उमेदवाराला परीक्षेसाठी वापरण्यास देण्यात येत आहे. ही वेळ संपेपयंत सदर प्रश्नपुस्तिकेची प्रत/प्रती, किंवा सदर प्रश्नपुस्तिकेतील काही आशय कोणत्याही स्वरूपात प्रत्यक्ष वा अप्रत्यक्षपणे कोणत्याही व्यक्तीस पुरविणे, तसेच प्रसिद्ध करणे हा गुन्हा असून अशी कृती करणाऱ्या व्यक्तीवर शासनाने जारी केलेल्या ''परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचा अधिनियम-82' यातील तरतुदीनुसार तसेच प्रचलित कायद्याच्या तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.

तसेच ह्या प्रश्नपत्रिकेसाठी विहित केलेली वेळ संपण्याआधी ही प्रश्नपुस्तिका अनिधकृतपणे बाळगणे हा सुद्धा गुन्हा असून तसे करणारी व्यक्ती आयोगाच्या कर्मचारीवृंदापैकी, तसेच परीक्षेच्या पर्यवेक्षकीयवृंदापैकी असली तरीही अशा व्यक्तीविरूद्ध उक्त अधिनियमानुसार कारवाई करण्यात येईल व दोषी व्यक्ती शिक्षेस पात्र होईल.

पुढील सूचना प्रश्नपुश्तिकेच्या शेवटच्या पानावर पहा

। क्षकांच्या सूचनेविना हे सील उघड़ नये

कच्च्या कामासाठी जागा/SPACE FOR ROUGH WORK

- 1. The low content of soil organic carbon in the Indian soils has been attributed to
 - a. Excessive tillage
 - b. Burning of crop residues
 - c. Prevalence of tropical, subtropical, arid and semiarid climatic conditions

Which of the above statement/s is/are correct?

- (1) Only a
- (2) Only b and c
- (3) Only c
- (4) All a, b and c
- 2. Soil formed in arid and semiarid regions or under restricted drainage usually have
 - (1) Low concentrated soil solution
 - (2) More concentrated soil solution
 - (3) More diluted soil solution
 - (4) Low salt conten
- 3. In the following equation of Stokes Law, $V = \left[\frac{2}{9} \frac{r^2(\rho_s \rho_f)}{\eta}g\right]$, η stands for
 - (1) Equivalent special radius of falling particle
 - (2) Prminal velocity of falling particles
 - (3) Viscosity of suspending particles
 - (4) Density of solid particles
- 4. The igneous rocks containing > 0 percent silica are known as
 - (1) Acid rocks
 - (2) Basic rocks
 - (3) Sub-acid rocks
 - (4) Sub-basic rocks

5. Match the following:

- a. Quartz
- I. Medium weathering ability
- b. Muscovite
- II. Low weathering ability
- c. Hornblende
- III. Very low weathering ability
- d. Olivine
- IV. Very high weathering ability

a

(1) IV

III

b

II

(2) III

- II
- 1

c

IV

 \mathbf{d}

I

(3) II

- IV
- III
- I

(4) I

Ш

IV II

6. Clay particles play a key role in agg egate formation due to

- a. Low surface area
- b. High surface area
- c. High surface charge
- d. Low surface charge

Which of the above statement/s is/are correct?

Answer Options:

(1) Only a

(2) Only a and b

(3) Only band d

(4) Only b and c

7. Octahedral sheet in clay minerals dominated by magnesium is known as

(1) Dioctahedral

(2) Trioctahedral

(3) Monooctahedral

(4) Polyoctahedral

8. The moisture content of soil on an oven-dry basis, at which plants will wilt and fail to recover their turgidity is observed at

(1) 15 bar suction

(2) 31 bar suction

(3) 5 to 10 bar suction

(4) $\frac{1}{2}$ bar suction

कच्च्या कामासाठी जागा / SPACE FOR ROUGH WORK

- **9.** Which of the following are typical characteristics of saline soils?
 - (1) EC greater than 4 dSm⁻¹, ESP less than 15, pH less than 8.5
 - (2) EC greater than 4 dSm⁻¹, ESP greater than 15, pH variable usually above 8.5
 - (3) EC less than 4 dSm^{-1} , ESP more than 15, pH 6.0
 - (4) EC less than 4 dSm^{-1} , ESP greater than 15, pH 8.5 10.0
- 10. Excess of Zn, Mn, and Cu induces
 - (1) Mo deficiency in crops
 - (2) Fe deficiency in crops
 - (3) S deficiency in crops
 - (4) B deficiency in crops
- 11. Which of the following desirable characteristics an ideal green manure crop should possess?
 - a. It should be legume with nodular growth
 - b. It should have little water requirement for its own growth
 - c. It should have a shallow root system
 - d. It should ontoin large quantities of non-fibrous tissues of rapid decomposability

Answer Options:

(1) Only a, b and c

(2) Only a, b and d

(3) Only a, c and d

- (4) Only b, c and d
- 12. The safe limit of Residual Sodium Carbonate (RSC) of irrigation water is
 - (1) 1.25 2.50 m.e./L

- (2) More than 2.50 m.e/L
- (3) Less than 1.25 m.e/L
- (4) None of the above
- 13. Which of the following is the complex fertilizer?
 - (1) Diammonium phosphate
- (2) Urea

(3) Sulphate of potash

(4) Super phosphate

	The	component which is not included in								
	(1)	Biofertilizers	(2)	Green manures						
	(3)	Biopesticides	(4)	Fertilizers						
15.	Cale	cium (Ca), Magnesium (Mg) and Sul	phur (S	S) are collectively termed as						
	(1)	Essential primary minerals	(2)	Secondary nutrients						
	(3)	Major nutrients	(4)	Micronutrients						
16.	The	The consumption of water containing high levels of nitrate -N can lead to								
	(1)	Blue baby syndrome in adults								
	(2)	Zinc chlorosis in infants								
	(3)	Ethanol globinemia in infants								
	(4)	Methanoglobinemia in infants								
			\frown							
17.	Who has developed the 'Banglore method' of composting?									
	743	ATL TY 1	(2)	Shri N.D. Pandharipande						
	(1)	Albert Howard	(Δ)							
	(3)	Dr. C.N. Acharya	(4)	None of the above						
18.	(3)	Dr. C.N. Acharya	(4)	-						
18.	(3)	Dr. C.N. Acharya per the wet oxidation (Walkley and	(4) Black	None of the above						
18.	(3) As j	Dr. C.N. Acharya per the wet oxidation (Walkley and	(4) Black	None of the above method of carbon estimation organic						
18.	(3) As j	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the	(4) Black organi	None of the above method of carbon estimation organic						
18.	(3) As 1 mat 1.72	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that	(4) Black	None of the above method of carbon estimation organic						
18.	(3) As p mat 1.72 (1)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c	Black organi arbon arbon	None of the above method of carbon estimation organic						
18.	(3) As J mat 1.72 (1) (2)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c	(4) Black organication arbon arbon	None of the above method of carbon estimation organic						
	(3) As I mat 1.72 (1) (2) (3) (4)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Contaganic matter contains 54% c Soil organic matter contains 54% c	Black organi arbon arbon arbon arbon	None of the above method of carbon estimation organic						
	(3) As I mat 1.72 (1) (2) (3) (4)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c	Black organi arbon arbon arbon arbon	None of the above method of carbon estimation organic						
	(3) As 1 mat 1.72 (1) (2) (3) (4) Whi	per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Contaganic matter contains 54% c Soil organic matter contains 52% c ach type of soil fixes more phosphate	Black organiarbon arbon arbon	None of the above method of carbon estimation organic carbon values by a conversion factor						
	(3) As 1 mat 1.72 (1) (2) (3) (4) Whi (1) (3)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Contaganic matter contains 54% c Soil organic matter contains 52% c ich type of soil fixes more phosphate Calcareous soils	Black organicarbon arbon arbon (2) (4)	None of the above method of carbon estimation organic carbon values by a conversion factor Neutral soils						
19.	(3) As 1 mat 1.72 (1) (2) (3) (4) Whi (1) (3)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Contaganic matter contains 54% c Soil organic matter contains 52% c ich type of soil fixes more phosphate Calcareous soils Alkaline soils	Black organiarbon arbon arbon (2) (4) are	None of the above method of carbon estimation organic carbon values by a conversion factor Neutral soils Acidic soils						
19.	(3) As I mat 1.72 (1) (2) (3) (4) Whi (1) (3)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Contaganic matter contains 54% c Soil organic matter contains 52% c ich type of soil fixes more phosphate Calcareous soils Alkaline soils source of negative charge on humus	Black organiarbon arbon arbon (2) (4) are	None of the above method of carbon estimation organic carbon values by a conversion factor Neutral soils Acidic soils						
19.	(3) As I mat 1.72 (1) (2) (3) (4) Whi (1) (3) The (1)	Dr. C.N. Acharya per the wet oxidation (Walkley and ter is calculated by mult plying the 4 on the assumption that Soil organic matter contains 58% c Soil organic matter contains 56% c Soil organic matter contains 54% c Soil organic matter contains 52% c Soil organic matter contains 52% c Ich type of soil fixes more phosphate Calcareous soils Alkaline soils source of negative charge on humus Hydroxy (- OH) and Carboxylic (-	Black organiarbon arbon arbon (2) (4) are	None of the above method of carbon estimation organic carbon values by a conversion factor Neutral soils Acidic soils						

None of the above

Fumigator

Duster

(2)

(3)

(4)

26.	For mounted implements the stress induced in top link of a three-point hitch is and as draft increases this force								
	(1)	tensile, decreases	(2)	compressive, decreases					
	(3)	tensile, increases	(4)	compressive, increases					
27.	The	basic component/s of a sprayer is/a	re						
	(1)	Nozzle body	(2)	Swirl plate					
	(3)	Spray lance	(4)	All of the zoov					
28.	Arr	ange the following crops in descen	ding o	rder of peripheral speed of the spike					
	toot	h type threshing drum :							
	a. Wheat								
	b.	Sorghum	igcup						
	c. Maize								
	d. Rice								
	Answer Options:								
	(1)	a, b, c, d	(2)	c, b, a, d					
	(3)	a, d, b, c	(4)	c, a, b, d					
29.	If the concave clearance is not adjusted then the following defect/s may be observed:								
	(1)	b oken grains							
	(2)	Unthreshed material							
	(3)	Bhusa							
	(4)	(1) and (2) above							
30.	If a farmer wants to erradicate weeds by spraying weedicide, then he should us type of nozzle.								
	(1)	Flat fan	(2)	Hollow cone					
	(3)	Solid cone	(4)	Flooding					
		_ _		_					

31.	Soy	bean is mostly used in India for th	ne produc	tion of							
	(1)) Edible oil									
	(2)	Pulses		k.							
	(3)	Milk substitutes									
	(4)	Processed food									
32.	Res	piration in plants, animals and fu	ngi invol	ves							
	a.	The disappearance of food subst	ance with	nin the cells							
	b.	The liberation of heat energy.									
	c.	The absorption of oxygen.									
	d.	Excretion of CO_2 .									
	Ans	Answer Options:									
	(1)	Only a	(2)	Only a and b							
	(3)	Only b, c and d	(4)	All a, b, c and d							
33.	For multiple effect evaporator when two evaporators are used in series then										
	(1)	$q_1 > q_2$	(2)	$q_1 < q_2$							
	(3)	$q_1 = q_2$	(4)	None of the above							
34.	Size	e reduction of grains is caused by	impact in								
		Attrition mill	(2)	Roller mill							
	(3)	Hammer mill	(4)	Jaw crusher							
35.	Dur	During evaporation takes place at the surface of material and the water									
	on t	on the surface behaves in a manner similar to an open area of water.									
	(1)) First falling rate drying period									
	(2)	2) Second falling rate drying period									
	(3)	Constant rate drying period									
	(4)	All of the above									
कच्च्य	 ा कामा	 साठी जागा / SPACE FOR ROUGH WO	 RK	P.T.O							

36.	Cap	acity of morai type grain storage structure varies from tonnes.
	(1)	3.5 to 18
	(2)	5 to 15
	(3)	10 to 15
-	(4)	20 to 25
37.	In fi	reeze drying the water vapour is removed by
	(1)	Melting
	(2)	Evaporation
	(3)	Condensation
	(4)	Sublimation
38.		separates the material on the basis of relative length difference.
	(1)	Specific gravity separator
	(2)	Air screen cleanness
	(3)	Spiral separator
	(4)	Indented cylinder separator
39.	The	indented cylinder separator separates the materials on the basis of
	(1)	Relat.ve width
	(2)	Relative thickness
	(3)	Pelative length
	(4)	Relative density
40.	At 1	00% relative humidity, wet bulb temperature of air is
	(1)	More than dew point temperature
	(2)	Less than dew point temperature
	(3)	Same as dew point temperature
	(4)	None of the above

41.	The	construction of drop structuronly.	e is usua	my limited upto the drop height of					
	(1)	1 to 2 m	(2)	2 to 3 m					
	(3)	3 to 4 m	(4)	4 to 5 m					
42.	Rair	nfall in the form of drizzle has in	tensity les	s than					
	(1)	1 mm/h	(2)	0·5 mm/h					
	(3)	1 cm/h	(4)	0·1 mm/h					
43.	In e	stimating peak rate of runoff wh	ich of the	following form is correct?					
	Q =	Peak rate of runoff, m ³ /sec							
	C =	C = Coefficient of runoff, unitless							
	I = Intensity of rainfall, cm/hr								
	A = Area, hectares								
	(1)	$Q = \frac{CIA}{36}$							
	(2)	$Q = \frac{CIA}{360}$		•					
	(3)	$(3) Q = \frac{CIA}{3 \cdot 0}$							
	(4)	C = 0 0105 CIA							
44.		surveys include photographic surveys of large areas in a relatively short							
	time for the purpose of project planning.								
	(1)	Route	(2)	Aerial					
	(3)	Cadastral	(4)	Agricultural					
45.				ls and deep or shallow excavations, the					
	out-	fill ratio may be as low as	and a	•					
•	(1)	0.2, 0.8	(2)	1.1, 2.0					
	(3)	1.5, 2.2	(4)	2·3, 3·1					

46.	Azir	nuth angle cannot exceed						
	(1)	90°	(2)	180°				
	(3)	270°	(4)	360°				
47.	Whi	ch type of graded bund is u	used when lengt	h of bund	and discharge are more?			
	(1)	Variable graded bund						
	(2)	Uniform graded bund						
	(3)	Solid bund		*				
	(4)	Contour bund						
48.	Sur	veys for laying out plots	and constructi	ıg street	s, water supply system and			
	sew	ers is known as						
	(1)	Cadastral survey						
	(2)	Engineering survey	7,					
	(3)	City survey						
	(4)	Topographical survey						
49.	The preparation of keeping the table at each of the successive stations parallel to the position which it occupied at the first station is known as							
	(1)	l evelling						
	(2)	Centering						
	(3)	Setting						
	(4)	Orientation	,					
50.		terracing practice is adopted l slope is greater than			servation in that area, where			
	(1)	05	(2)	10				
	(3)	20	(4)	30				

कच्चा	कामार	नाठी जागा / SPACE FO	OR ROUGH WORK	ζ			P. ²	T.O.
	(1)	1·4 mm (2	·	(3)	14 mm	(4)	14 cm	
	Ans	wer Options :						
	c.	Crop coefficient (l	$\mathbf{xc}) = 1.00$					
	b.	Pan factor = 0.7					•	
	a.	Pan evaporation ((PE) = 20 mm/da	y				
55.	Wha	at will ETc be for fo	_					
				_				
	(1)	Only a and c (2	2) Only b	(3)	Only c	(4)	Only c and d	ł
	Ans	wer Options:	o one-nan					
	c.	One-Durth and u One-fifth and upt						
	b.	One third and up					•	
	a.	One-fifth and upt						
54.		tter selection shou zontal cros -section	root system.	it shou	ld wet at least		poter	ntial
			\bigcirc					
	(3)	Gridiron		(4)	Random			
	(1)	le usually from bot. Herringbone	n the sides?	(2)	Interceptor			
53.		ch drainage layout		of para	llel laterals tha	at ent	er the main a	t an
	(3)	Percolation		(4)	Stream flow			
	(1)	Laminar flow		(2)	Seepage			
	grav	vitational force.					-	
52.	It i	s the downward	vertical movem	ent of	water through	h soi	l mainly due	e to
	(3)	Only a, c and d		(4)	Only a, b and	d		
	(1)	Only a, b and c		(2)	Only b, c and			
	Ans	wer Options :						
	d.	Screen filter is us	ed to remove hig	h densi	ty particle.			
	c.	Disc filters are us	ed to remove org	anic ma	ate r ial and alga	e.		
	b.	Hydrocyclone filte	er is used to remo	ove high	n density partic	le.		
	a.	Sand filter is used	d to remove orga	nic and	inorganic mate	rial.		
51.	Whi	ch statements are	valid regarding f	iltratio	n system of drip	irrig	ation system ?	?

56.	The harmful ingredient	s in brick earth are
	(1) Iron pyrites	
	(2) Alkalies	•
	(3) Pebbles	
	(4) All of the above	
57.	In the arrangement of from cattle shed and oth	the farmshed, residential buildings should be located away
	(1) Privacy	
	(2) Reduction of nuisa	nce of flies and smell coming from the dairy barn
	(3) Both (1) and (2)	
	(4) None of the above	
58.	Which of the following i	s/are not special mortar(s)?
	(1) Fire-resistant mor	tar
	(2) Packing mortar	
	(3) Sound-absorbing n	ırtar
	(4) All above are sp ci	al mortars
59.	The concrete yield obt	ained from one 50 kg cement bag for a concrete mix of be
	$(1) \sim 1.68 \text{ m}^3$	(2) 16.3 m^3
	(3) 0.163 m^3	(4) 163 m^3
60.		hrough one layer of UV-inhibited polythene, then amount of vo layers of the same polythene in polyhouse will be
	(1) 0.81%	
	(2) 0.91%	
	(3) 0.61%	
	(4) 0.71%	

T.	44 111	ch of the i	OHOWHIE	is the pro	geny or	preede	is seeu :	
	(1)	Nucleus	seed			(2)	Breeder seed	
	(3)	Foundat	ion seed		_	· (4)	Certified seed	
2.	Disa	advantage:	s of mini	imum tilla	ge are			
	a.	Lower se	ed germ	ination				
	b.	More N i	has to be	added				
	c.	Sowing o	peration	ns are diffi	cult			
	d.	Continuo	ous use o	of herbicid	es			
	Ans	swer Opti	ons:					
	(1)	Only a a	nd b			(2)	Only a, b and c	
	(3)	All of the	e above		\sim	(4)	Only b and d	
3.	Pota	ato and ele	ephant y	am are cla	sified	as		
	(1)	Fibre cro	ps		•	(2)	Forage crops	
	(3)	Spice cro	ops ((4)	Tuber crops	
4.	Mat	ch the fol	owing:					
		Crops	7			Assoc	iated Weeds	
	a.	Sorghum	ı		I.	Oroba	nche indica	
•	b.	Rice			II.	Phala	ris minor	
	c.	Wheat			III.	Striga	lutea	
	d.	Tobacco			IV.	Echine	ochloa colonum	
		а	b	c	d			
	(1)	I	II	III	ΓV	•		
	(2)	III	IV	II	I			
	(3)	IV	III	I	II			
	(4)	II	IV	III	Ι			
	कामार	प्राठी जागा <i>।</i> :	SPACE F	OR ROUGI	H WORK			P.T.O

65.	soils are ideal for most crops because of adequate nutrient and water							
	avai	and well	drained con	ditions.				
	(1)	Claye	у			(2)	Sandy	
	(3)	Heavy	y			(4)	Loamy	
66.	The	term		_ is used	to descri	be ·	the resistance of a soil at different	
	soil-moisture contents to mechani				ical stres	s or	manipulations.	
	(1)	Soil c	onsistency			(2)	Soil workability	
	(3)	Friab	ility index			(4)	Soil tilth	
67.	'Lantana Camara' (Lantana wee				ed) can b	e ef	fectively controlled through biocontrol	
	(1) Microlarinus lypriformis					(2)	Neochetina eichhorniae	
	(3)	Teleon	nemia scru	pulosa		4)	Agasicles hygrophila	
68.	Win	ity is gene	rally measu	red by				
	(1)	Baron	neter		7	(2)	Anemometer	
	(3)	Altim	eter			(4)	Cyclometer	
69.	Mat	ch the	following	S				
			Δ	4	В			
		Weat	her Elem	ents	Units			
	a.	Vapor	ır pressure	e	I.	M	illibars/mm of Hg/Pascals	
	b. •	Brigh	t sunshine	duration	II.	m	m of Hg	
	c.		cover		III.		rs.	
	d.	Atmo	spheric pre	essure	IV.	0	kta (0 to 8)	
		а	b	c	d			
	(1)	IV	III	II	I			
	(2)	II	III	IV	I			
	(3)	I	II	III	IV			
	(4)	IV	II	III	I			
				EOD BOUCH				

70.	Sho	rt-range weather forecast	is valid for						
	(1)	4 – 10 days	(2)	3 days					
	(3)	12 – 15 days	(4)	20-25 days					
71.		Based on vertical temperature differences, atmosphere is notionally divided into four major layers or strata among them the outer upper most layer is							
	(1)	Stratosphere	(2)	Mesosphere					
	(3)	Thermosphere	(4)	Troposphere					
72.		are the line	s with uniform v	alves of a given scalar quantities.					
	(1)	Isopleths	(2)	Tsohyets ·					
	(3)	Isobars	(4)	Isonephs					
73.		are the dry, col	d p evailing wine	ds that blow from high pressure areas					
	of polar highs at North and South poles towards low pressure areas within the westerlies at high latitudes.								
	(1)	Trade winds	(2)	Westerly winds					
	(3)	Polar esterlies	(4)	Breeze					
74.	A so	A soil is saline, ir							
	(1)	(1) EC_e 4 dS/m, ESP < 15% and pH < 8.5							
	(2) EC _e < 4 dS/m, ESP > 15% and pH > 8.5								
	(3)	EC _e < 4 dS/m, ESP > 15	% and pH = 8.5						
	(4)	$EC_e > 4 \text{ dS/m}, ESP > 15$	% and pH > 8·5						
75.	A volume necessary to cover an area of 1.0 hectare to a depth of 1 centimetre i.e hectare centimetre is equal to								
	(1)	10,000 litres							
	(2)	1,00,000 litres							
	(3)	10,00,000 litres							
	(4)	100,00,000 litres							
कारस्य	ा कामार	पाठी जागा / SPACE FOR ROL	IGH WORK	P.T.O					

76.	The downward entry of water from the air medium into the soil is termed as					
	(1)	Adsorption				
	(2)	Absorption				
	(3)	Infiltration				

77. Respiration decreases with

Gravitation

(1) Mild stress

(4)

- (2) Decrease in moisture stress
- (3) Increase in moisture stress
- (4) None of the above
- **78.** Match the following:

	Type of	soil			Available moisture mm m ⁻¹
a.	Clay loan	n		I.	60
b.	Silt loam			II.	150
c.	Clay			III.	100
d.	Loamy sa	ınd		IV.	200
	а	b	c	d	
(1)	II 🚺	Ш	IV	Ι	
(2)	I	II	III	L	V
(3)	II	IV	I	IJ	I
(4)	IV	III	II	I	

- 79. Water is released at the rate of 8 cumec at the head of sluice. Duty at field is 120 ha cumec⁻¹ and transit loss is 20 percent. How much area can be irrigated with released water?
 - (1) 568 ha

(2) 868 ha

(3) 1068 ha

(4) 768 ha

Α	19			Y1		
80.						
	(1)	Gravitational water				
	(2)	Capillary water				
	(3)	Hygroscopic water				
	(4)	Atmospheric water				
81.	First sorghum hybrid CSH – 1 was released in					
	(1)	1961	(2)	1962		
	(3)	1963	(4)	1964		
82.	Ste	Sterility mosaic (sm) disease of pigeonpea is transmitted by the vector				
	(1)	Pod borer	(2)	Moth fly		
	(3)	Pod fly	(4)	Mite		
83.		ia are	fication gen	erally cultivated species of cotton in		
83.	Indi a.	ia are Gossypium art oreum	fication gen	erally cultivated species of cotton in		
83.	Indi	ia are Gossypium are oreum Gossypium herbaccum	ification gen	erally cultivated species of cotton in		
83.	Indi a. b. c.	ia are Gossypium are oreum Gossypium herbaceum Gossypium hirsutum	ification gen	erally cultivated species of cotton in		
83.	Indi a. b.	ia are Gossypium are oreum Gossypium herbaccum	ification gen	erally cultivated species of cotton in		
83.	India. b. c. d.	ia are Gossypium are oreum Gossypium herbaceum Gossypium hirsutum	ification gen	erally cultivated species of cotton in		
83.	India. b. c. d.	ia are Gossypium ar oreum Gossypium herbaccum Gossypium hirsutum Gossypium barbadense	ification gen	erally cultivated species of cotton in		
83.	India. b. c. d.	ia are Gossypium ar oreum Gossypium herbaccum Gossypium hirsutum Gossypium barbadense ver Options:	ification gen	erally cultivated species of cotton in		
83.	Indi a. b. c. d. Aut (1)	Gossypium ar oreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense wer Options: Only a and b	ification gen	erally cultivated species of cotton in		
83.	Indi a. b. c. d. Aut (1) (2)	Gossypium are oreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense ver Options: Only a and b Only b and c	ification gen	erally cultivated species of cotton in		
	Indi a. b. c. d. (1) (2) (3) (4)	Gossypium ar oreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense ver Options: Only a and b Only b and c Only c and d All a, b, c and d				
83.	Indi a. b. c. d. (1) (2) (3) (4)	Gossypium ar oreum Gossypium herbaceum Gossypium hirsutum Gossypium barbadense ver Options: Only a and b Only b and c Only c and d All a, b, c and d		fy structures due to phyllody. It is on		

85.	SRI	is one of the methods of cultivation of	of			
	(1)	Bt. cotton	(2)	Sugarcane		
	(3)	Sugarbeet	(4)	Rice		
86.	In I	ndia, the maximum area of wheat is	under	the species		
	(1)	Triticum aestivum				
	(2)	Triticum durum				
	(3)	Triticum dicoccum				
	(4)	Triticum sphaerococcum				
87.	The	fodder crop Lucerne contains about	•	percent crude protein.		
	(1)	6 – 7	(2)	0 - 12		
	(3)	15 – 20	(4)	25 – 30		
88.	The seed rate of wheat under normal condition iskg/ha.					
	(1)	100 – 125	(2)	50 - 60		
	(3)	200 – 250	(4)	180 – 200		
89.	The floating of fine lust particles smaller than 0.1 mm diameter through the air is					
	known as					
	(1)	Dispersion				
	(2)	Satation				
	(3)	Suspension				
	(4)	Surface creep				
90.				035.1		
90.	Kol	hapur is headquarters of	_ Agro	Climatic Zone of Maharashtra.		
90.	(1)	hapur is headquarters of Central Maharashtra Plain Zone	_ Agro	Climatic Zone of Maharashtra.		
90.			_ Agro	Climatic Zone of Maharashtra.		
90.	(1)	Central Maharashtra Plain Zone	_ Agro	Climatic Zone of Maharashtra.		

- 91. The resistance to metabolic strain and plastic strain can increase the plant ability to resist and survive under moisture stress is referred as
 - (1) Restricting transpiration stress
 - (2) Accelerating water uptake stress
 - (3) Mitigating the stress
 - (4) Tolerating the stress
- 92. Keeping stubbles in trenches protruding above the gound level enhances the available soil moisture. It is known as
 - (1) Crop residue mulch
 - (2) Parallel mulch
 - (3) Stubble mulch
 - (4) Vertical mulch
- 93. Which type of bench terraces are most effective for high rainfall areas?
 - (1) Inward sloping bean terraces
 - (2) Out vard sloping bench terraces
 - (3) Levelled or table top bench terraces
 - California type of terraces
- 94. The process of runoff collection during periods of peak rainfall in storage tanks, ponds, etc. is usually referred to as
 - (1) Collection of rainfall
 - (2) Use of rainfall water
 - (3) Water harvesting
 - (4) Water disposal

95.

In rainfed farming systems the principles of relevant components of environmentally

	suis	stainable farming system should in	clude				
	a.	Reducing soil erosion and improving soil conservation.					
	b.	Inclusion of legumes and cover crops in crop rotations.					
	c.	Agroforestry as an alternate land use system.					
	d.	Judicious use of organic wastes.					
	Ans	swer Options :					
	(1)	Only a and b	(2)	Only b and c			
	(3)	Only c and d	(4)	All a, b, c and d			
96.	Which of the following is a resource management strategy to active economic and						
	sust	sustained agricultural production to meet the requirements of farm livelihood while					
	pres	serving resource base and main(u	ing env	ironmental quality?			
	(1)	Cropping system					
	(2)	Eco-farming					
	(3)	Farming system					
	(4)	Sustainable agriculture					
97.	The cortinued maintenance of plant population within its ecosystem to which it is adapted is referred as plant genetic resources conservation.						
	a.	In situ conservation					
	b.	Ex-situ conservation					
	c.	Species diversity conservation					
	d.	Resource conservation					
	Ans	swer Options:					
	(1)	Only a	(2)	Only b and c			
	(3)	Only c and d	(4)	Only b and d			

		— 						
98.	describes the processes of on-farm innovations adopted by farmers towards achieving the goals of sustainable agriculture.							
	(1)	Alternate agriculture						
	(2)							
	(3)							
	(4)	Conventional agriculture						
99.	Which of the following is/are the broad major components of sustainable agriculture?							
	a.	Sustainable utilization of land, water resources and biodiversity						
	b.	Integrated nutrient management						
	c.							
	d.	d. Enhancing sustainability of dry land and irrigated agriculture						
	Answer Options:							
	(1)	Only c (2) Only a						
	(3)	Only a and d (4) All of the above						
100.	Whi	ich of the tollowing are the agronomic measures of soil conservation?						
	a.	Contour cultivation						
	b.	Strip cropping						
	c.	Bench terraces						
	d.	d. Application of organic manures						
	Answer Options:							
	(1)	Only a, b and c						
	(2)	Only a, b and d						
	(3)	Only b, c and d						
	(4)	All of the above						

सूचना 🗀 (पृष्ठ 1 वरून पुढे.....)

- (8) प्रश्नपुस्तिकेमध्ये विहित केलेल्या विशिष्ट जागीच कच्चे काम (एफ वर्क) करावे. प्रश्नपुस्तिकेव्यतिरिक्त उत्तरपत्रिकेवर वा इतर कागदावर कच्चे काम केल्यास ते कॉपी करण्याच्या उद्देशाने केले आहे, असे मानले जाईल व त्यानुसार उमेदवारावर शासनाने जारी केलेल्या "परीक्षांमध्ये होणाऱ्या गैरप्रकारांना प्रतिबंध करण्याबाबतचे अधिनियम-82" यातील तरतुदीनुसार कारवाई करण्यात येईल व दोषी व्यक्ती कमाल एक वर्षाच्या कारावासाच्या आणि/किंवा रुपये एक हजार रकमेच्या दंडाच्या शिक्षेस पात्र होईल.
- (9) सदर प्रश्नपत्रिकेसाठी आयोगाने विहित केलेली वेळ संपल्यानंतर उमेदवाराला ही प्रश्नपुस्तिका स्वत:बरोबर परीक्षाकक्षाबाहेर घेऊन जाण्यास परवानगी आहे. मात्र परीक्षा कक्षाबाहेर जाण्यापूर्वी उमेदवाराने आपल्या उत्तरपत्रिकेचा भाग-1 समवेक्षकाकडे न विसरता परत करणे आवश्यक आहे.

नम्	ना	प्रश	न

	٠.٠	
Pick out the	correct word to fill in the blan	c:
Q.No. 201.	I congratulate you	your Trend success.
	(1) for	(2) at
	(3) on	(4) sbout
		अं अते त्यामुळे या प्रश्नाचे उत्तर ''(3)'' होईल. यास्तव
	and the second s	उत्तर-प्रमांक ''③'' हे वर्तुळ पूर्णपणे छायांकित करून दाखविणे
	आवश्यक आहे.	4

प्र.क्र. 201. 1 2 🔵 🗸

अशा पद्धतीने प्रस्तुत प्रश्नुस्तिनेत ल प्रत्येक प्रश्नाचा तुमचा उत्तरक्रमांक हा तुम्हाला स्वतंत्ररीत्या पुरविलेल्या उत्तरपत्रिकेवरील त्या त्या प्रश्नद्रक्राकासमोरील संबंधित वर्तुळ पूर्णपणे छायांकित करून दाखवावा. ह्याकरिता फक्त काळूटा शार्डच ऑलपेन वापरावे, पेन्सिल वा शार्डचे पेन वापरू नये.

्या कामासाठी जागा/SPACE FOR ROUGH WORK