

-

point E, then $AE \times EB = CE \times ED$. **Given:** Chords AB and CD of a circle intersect outside the circle in point E. **To prove:** $AE \times EB = CE \times ED$ **Construction:** Draw seg AD and seg BC. **Proof:** In $\triangle ADE$ and $\triangle CBE$, $\angle AED \cong$

Q.2.B Solve any TWO of the following:

- 1) Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq. cm.
- 2) Draw a circle of radius 3.6 cm. Draw a tangent to the circle at any point on it without using the centre.
- 3) The area of a sector of a circle of 6 cm radius is 15π sq.cm. Find the measure of the arc and length of the arc corresponding to the sector.

Q.3 Solve any THREE of the following:

1) In the adjoining figure, circle with centre M touches the circle with centre N at point T. Radius RM touches the smaller circle at S. Radii of circles are 9 cm and 2.5 cm. Find the answers to the following questions, hence find the ratio MS : SR.

- i) Find the length of segment MT.
- ii) Find the length of seg MN.
- iii) Find the measure of \angle NSM.

2) Observe the measures of pots in the given figures. How many jugs of water can the cylindrical pot hold?

Conical water jug Cylindrical water pot

- 3) Find the ratio in which point P (k, 7) divides the segment joining A(8, 9) and B(1, 2). Also find k.
- 4) Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

Given: \square ABCD is a parallelogram, diagonals AC and BD intersect at point M. **To prove:** $AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + AD^2$

[9]

[4]

Q.4 Solve any ONE of the following

- 1)
- Prove that $\frac{1+\sin x \cos x}{1+\sin x + \cos x} + \frac{1+\sin x + \cos x}{1+\sin x \cos x} = 2 \operatorname{cosec} x$. In the adjoining figure, AB is the diameter of circle with centre O, AC is tangent at point A and 2) BC intersects the circle at point D. Line JH touches the circle at point D and intersects AC in point J.

Prove that seg $AJ \cong seg CJ$.

Q.5 Solve any ONE of the following

- Distance between the places A and B is 225 km. In a map this distance is denoted by a segment 1) of length 2.5 cm. In the same map if the distance of a place C from A is 4.2 cm. then what is the actual distance between A and C.
- 2) In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex opposite to the base and the centroid-.

*This question paper is for practice purpose only.

[4]

[3]