Q.1.A Choose the correct alternative.

1) If $\sin \theta=\frac{7}{25}$, find the value of $\cos \theta$.
A) $\frac{24}{25}$
B) $\frac{25}{24}$
C) $\frac{7}{24}$
D) $\frac{25}{7}$
2) Out of the dates given below which date constitutes a Pythagorean triplet?
A) $15 / 08 / 17$
B) $16 / 08 / 16$
C) $3 / 5 / 17$
D) $4 / 9 / 15$
3) In the adjoining figure, seg $X Y \| \operatorname{seg} B C$, then which of the following statements is true?
A) $\frac{A B}{A C}=\frac{A X}{A Y}$
B) $\frac{A X}{X B}=\frac{A Y}{A C}$
C) $\frac{A X}{Y C}=\frac{A Y}{X B}$
D) $\frac{A B}{Y C}=\frac{A C}{X B}$
4) $\quad Q$ is a point on a circle with centre P, then we can draw \qquad to the circle at point Q .
A) at least one tangent
B) Only one tangent
C) more than one tangent
D) maximum two tangents.
Q.1.B Solve any TWO of the following:
5) Construct a tangent to a circle with centre P and radius 3.2 cm at any point M on it.
6) \quad In $\square A B C D$, seg $A D \| \operatorname{seg} B C$. Diagonal $A C$ and diagonal $B D$ intersect each other in point P.

Then show that $\frac{A P}{P D}=\frac{P C}{B P}$.

3) Verify if the points $\mathrm{A}(-1,-1), \mathrm{B}(0,1)$ and $\mathrm{C}(1,3)$ are collinear or not.
Q.2A Complete the any TWO of the following activities:

1) In $\triangle A B C$, ray $B D$ bisects $\angle A B C$. A-D-C, side $D E \|$ side $B C, A-E-B$, then prove that $\frac{A B}{B C}=\frac{A E}{E B}$. In $\triangle A B C$, ray $B D$ bisects $\angle B$.
..........[Given]
$\therefore \frac{A B}{B C}=\frac{A D}{D C}$
(i) \square
In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
.........[Given]
$\therefore \frac{A E}{E B}=\frac{A D}{D C}$
.(ii) \square
$\therefore \quad \frac{\mathbf{A B}}{\square}=\frac{\square}{\mathrm{EB}}$

........[From (i) and (ii)]
2) If $P Q \| R S$ and $P(1,-2), Q(5,2) R(3, k)$ and $S(k,-5)$. Complete the following activity to find value of k.
$\therefore \quad$ Slope of $\mathrm{PQ}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\square-\square}{\square-\square}=\frac{\square}{\square}$
Slope of RS $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\square-\square}{\square-\square}=\frac{\square}{\square}=\frac{\square}{\square}$
But slope of $\mathrm{PQ}=$ slope of $\mathrm{RS}(\because, \square$ lines have \square slopes $)$

3) Theorem: If secants containing chords AB and CD of a circle intersect outside the circle in
point E , then $\mathrm{AE} \times \mathrm{EB}=\mathrm{CE} \times \mathrm{ED}$.
Given: Chords AB and CD of a circle intersect outside the circle in point E .
To prove: $\mathrm{AE} \times \mathrm{EB}=\mathrm{CE} \times \mathrm{ED}$
Construction: Draw seg AD and seg BC.
Proof: In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{CBE}$,

$\ldots\left[\begin{array}{l}\text { Corresponding sides } \\ \text { of similar triangles }\end{array}\right]$

Q.2.B Solve any TWO of the following:

1) Find the diagonal of a rectangle whose length is 16 cm and area is $192 \mathrm{sq} . \mathrm{cm}$.
2) Draw a circle of radius 3.6 cm . Draw a tangent to the circle at any point on it without using the centre.
3) The area of a sector of a circle of 6 cm radius is $15 \pi \mathrm{sq} . \mathrm{cm}$. Find the measure of the arc and length of the arc corresponding to the sector.
Q. 3 Solve any THREE of the following:
4) In the adjoining figure, circle with centre M touches the circle with centre N at point T . Radius RM touches the smaller circle at S. Radii of circles are 9 cm and 2.5 cm . Find the answers to the following questions, hence find the ratio MS:SR.
i) Find the length of segment MT.
ii) Find the length of seg MN.
iii) Find the measure of $\angle \mathrm{NSM}$.

5) Observe the measures of pots in the given figures. How many jugs of water can the cylindrical pot hold?

Cylindrical water pot
3) Find the ratio in which point $P(k, 7)$ divides the segment joining $A(8,9)$ and $B(1,2)$. Also find k.
4) Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
Given: $\square \mathrm{ABCD}$ is a parallelogram, diagonals AC and BD intersect at point M .
To prove: $\mathrm{AC}^{2}+\mathrm{BD}^{2}=A \mathrm{~B}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}$

Q. 4 Solve any ONE of the following

1) Prove that $\frac{1+\sin x-\cos x}{1+\sin x+\cos x}+\frac{1+\sin x+\cos x}{1+\sin x-\cos x}=2 \operatorname{cosec} x$.
2) In the adjoining figure, AB is the diameter of circle with centre O, AC is tangent at point A and BC intersects the circle at point D . Line JH touches the circle at point D and intersects AC in point J.
Prove that seg $\mathbf{A J} \cong \operatorname{seg} \mathbf{C J}$.

Q. 5 Solve any ONE of the following
3) Distance between the places A and B is 225 km . In a map this distance is denoted by a segment of length 2.5 cm . In the same map if the distance of a place C from A is 4.2 cm . then what is the actual distance between A and C.
4) In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm . Find the distance between the vertex opposite to the base and the centroid-.
