c	Subject – Geometry Set: – I MKCL Std. – 10 th EM/Semi www.mkcl.org Marks: 4	[[rs 40
Q.1.A 1)	Choose the correct alternative. Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of altitude.	[4]
2)	A) 9 cm B) 4 cm C) 6 cm D) $2\sqrt{6}$ cm If point P divides segment joining (-5, 3) and (3, -5) in the ratio 1 : 3, then the co-ordinates of point P are A) (-2, -2) B) (-1, -1) C) (-3, 1) D) (1, -3)	
3)	A) (2, 2)B) (1, 1)C) (3, 1)D) (1, 3)A circle touches all sides of a parallelogram. So the parallelogram must be a	
4)	If $d(O, M) = 7$ cm, then we can draw at the most tangent segments from the point M to the circle with centre O and radius 4 cm A) 3 B) 7 C) 2 D) 1	
Q.1.B 1)	Solve any TWO of the following: In the adjoining figure, if A(P-ABC) = 154 cm ² , radius of the circle is 14 cm, find i) $\angle APC$, ii) $l(\operatorname{arc} ABC)$.	[4]
2)	Find the slope of the diagonals of a quadrilateral with vertices A(1, 7), B(6, 3), C(0, -3) and $(-3, 3)$.	
3)	A boy is at a distance of 60 metres from a tree and makes an angle of elevation of 60° with the top of the tree. What is the height of the tree? ($\sqrt{3} = 1.73$)	
Q.2A 1)	Complete the any TWO of the following activities:	[4]

E(6,1)

ź

45°

F(4,-1)

45°

3

45°

B(-3,-1)

0

1

3

-6 -7 D(O

 \therefore Slope of line $\ell =$ Slope of line m =Slope of line n =From this we can verify that lines have slopes. Complete the following activity to find 2) $A(\Delta L\dot{M}N)$ $A(\Delta DMN)$ **Sol:** In Δ LMN, MN is the base and LP is the height. In Δ DMN, MN is the base and DQ is the height. $A(\Delta LMN) =$. $A(\Delta DMN)$...[The ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]

3)

In the adjoining figure, line *l* touches the circle with centre O at point P, Q is the midpoint of radius OP. RS is a chord through Q such that chords RS \parallel line *l*. If RS = 12, find the radius of the circle.

Sol: Let the radius of the circle be r. line *l* is the tangent to the circle and seg OP is the radius.[Given] \therefore seg $\Box \perp$ line *l*[Tangent theorem] chord RS || line *l*[Given] \therefore seg OP $\perp \Box$ \therefore QS = $\frac{1}{2}$[Perpendicular drawn from the centre of the circle to the bisects the chord $=\frac{1}{2} \times 12$ = 6 cmAlso, $\Box = \frac{1}{2} \text{ OP}$ [Q is the midpoint of OP] $=\frac{1}{2} \text{ r}$ In $\triangle OQS, \angle OQS = 90^{\circ}$ [seg OP \perp chord RS] \therefore OS² = $\Box + QS^2$ \therefore r² = $\Box + 6^2$ \therefore r² = $\frac{1}{4}$ r² + 36 $\therefore r^{2} - \frac{1}{4}r^{2} = 36$ $\therefore \frac{3}{4}r^{2} = 36$ $\therefore r^{2} = \frac{36 \times 4}{3}$ $\therefore r^{2} = \boxed{\qquad}$ $\therefore r = \sqrt{48}$ $= \boxed{\qquad}$

 \therefore The radius of the given circle is \square cm.

Q.2.B Solve any TWO of the following:

1) In $\triangle PQR$, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.

- 2) Radius of a circle is 10 cm. Measure of an arc of the circle is 54°. Find the area of the sector associated with the arc and length of the arc. ($\pi = 3.14$)
- 3) \Box MRPN is cyclic, $\angle R = (5x 13)^\circ$, $\angle N = (4x + 4)^\circ$. Find measures of $\angle R$ and $\angle N$.

Q.3 Solve any THREE of the following:

1) In the given figure, a toy made from a hemisphere, a cylinder and a cone is shown. Find the total area of the toy. (Express your answer in terms of π)

2) In the adjoining figure, bisectors of $\angle B$ and $\angle C$ of $\triangle ABC$ intersect each other in point X. Line AX intersects side BC in point Y. AB = 5, AC = 4.

- 3) Prove that: $\frac{\tan\theta}{\sec\theta-1} = \frac{\tan\theta+\sec\theta+1}{\tan\theta+\sec\theta-1}$.
- 4) In the adjoining figure, line PR touches the circle at point Q. Answer the following questions with the help of the figure.
 - i) What is the sum of $\angle TAQ$ and $\angle TSQ$?
 - ii) Find the angles which are congruent to $\angle AQP$.
 - iii) Which angles are congruent to $\angle QTS$?
 - iv) $\angle TAS = 65^{\circ}$, find the measures of $\angle TQS$ and arc TS.

Q.4 Solve any ONE of the following

1) Through the mid point M of the side CD of parallelogram ABCD, the line BM is drawn intersecting AC in L and AD produced in E. Prove that EL = 2BL.

[4]

[4]

[9]

2) ΔPQR is a right angled triangle, right angled at Q such that QR = b and $A(\Delta PQR) = a$. If $QN \perp PR$ then show that $QN = \frac{2a.b}{\sqrt{b^4 + 4a^2}}$

Q.5 Solve any ONE of the following:

- 1) Given: $\Delta PQR \sim \Delta PST$ such that $\frac{PR}{PT} = \frac{3}{5} \& PQ = 7.3 \text{ cm } \& PR = 6.5 \text{ cm } \& \angle RPQ = 70^{\circ}$ Construct ΔPQR and then construct ΔPST by dividing seg PQ in 3 equal parts and then finding out position of point S on line PQ such that P - Q - S and $\frac{PQ}{PS} = \frac{3}{5}$
- 2) If sin (A + B + C) = 1. tan (A B) = $\frac{1}{\sqrt{3}}$, cos (A + C) = $\frac{1}{2}$, then find the values of A, B and C. using the values of trigonometric ratios at angles 0°, 30°, 45°, 60° and 90°.

*This question paper is for practice purpose only.