Q.1.A Choose the correct alternative.

1) Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm . Find the length of altitude.
A) 9 cm
B) 4 cm
C) 6 cm
D) $2 \sqrt{6} \mathrm{~cm}$
2) If point P divides segment joining $(-5,3)$ and $(3,-5)$ in the ratio $1: 3$, then the co-ordinates of point $P$ are
A) $(-2,-2)$
B) $(-1,-1)$
C) $(-3,1)$
D) $(1,-3)$
3) A circle touches all sides of a parallelogram. So the parallelogram must be a $\qquad$ .
A) rectangle
B) rhombus
C) square
D) trapezium
4) If $d(O, M)=7 \mathrm{~cm}$, then we can draw at the most $\qquad$ tangent segments from the point M to the circle with centre O and radius 4 cm
A) 3
B) 7
C) 2
D) 1
Q.1.B Solve any TWO of the following:
5) In the adjoining figure, if $\mathrm{A}(\mathrm{P}-\mathrm{ABC})=154 \mathrm{~cm}^{2}$, radius of the circle is 14 cm , find
i) $\angle \mathrm{APC}$,
ii) $l$ (arc ABC).

6) Find the slope of the diagonals of a quadrilateral with vertices $\mathrm{A}(1,7), \mathrm{B}(6,3), \mathrm{C}(0,-3)$ and $(-3,3)$.
7) A boy is at a distance of 60 metres from a tree and makes an angle of elevation of $60^{\circ}$ with the top of the tree. What is the height of the tree? $(\sqrt{3}=1.73)$
Q.2A Complete the any TWO of the following activities:


Observe the given graph and complete following activity.
line $\ell$, line m and line n make angle of $45^{\circ}$ with the positive direction of X -axis
$\therefore$ line $\ell \|$ line $\mathrm{m} \|$ line n $\qquad$ .(corresponding angles test)
Now, let us find slopes of line $\ell$, line $m$ and line $n$ using ratio $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$


From this we can verify that $\square$ lines have $\square$ slopes.
2) Complete the following activity to find
$\frac{\mathrm{A}(\Delta \mathrm{LMN})}{\mathrm{A}(\triangle \mathrm{DMN})}$.
Sol: In $\triangle L M N, ~ M N ~ i s ~ t h e ~ b a s e ~ a n d ~ L P ~ i s ~ t h e ~ h e i g h t . ~$
In $\triangle \mathrm{DMN}, \mathrm{MN}$ is the base and DQ is the height.

...[The ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]

3) In the adjoining figure, line $l$ touches the circle with centre O at point $\mathrm{P}, \mathrm{Q}$ is the midpoint of radius OP . RS is a chord through Q such that chords $\mathrm{RS} \|$ line $l$. If $\mathrm{RS}=12$, find the radius of the circle.


Sol: Let the radius of the circle be r . line $l$ is the tangent to the circle and seg OP is the radius.
.........[Given]
$\therefore$ seg $\square \perp$ line $l$
........[Tangent theorem]
chord RS || line $l$
....[Given]
$\therefore \operatorname{seg} \mathrm{OP} \perp \square$
$\therefore \mathrm{QS}=\frac{1}{2} \square$
$\ldots . .\left[\begin{array}{c}\text { Perpendicular drawn from the centre of the circle to the } \\ \text { bisects the chord }\end{array}\right]$
$=\frac{1}{2} \times 12$
$=6 \mathrm{~cm}$
Also, $\square=\frac{1}{2}$ OP $=\frac{1}{2} \mathrm{r}$
$\ldots \ldots . . .[\mathrm{Q}$ is the midpoint of OP$]$

In $\triangle \mathrm{OQS}, \angle \mathrm{OQS}=90^{\circ}$
.......[seg OP $\perp$ chord RS]
$\therefore \mathrm{OS}^{2}=\square+\mathrm{QS}^{2}$
$\therefore \mathrm{r}^{2}=\square+6^{2}$
$\therefore r^{2}=\frac{1}{4} r^{2}+36$
$\square$
$\therefore \mathrm{r}^{2}-\frac{1}{4} \mathrm{r}^{2}=36$
$\therefore \frac{3}{4} r^{2}=36$
$\therefore \mathrm{r}^{2}=\frac{36 \times 4}{3}$
$\therefore r^{2}=\square \quad \ldots . .$. [Taking square root of both sides]
$\therefore r=\sqrt{48}$

$$
=\square
$$

$\therefore$ The radius of the given circle is $\square \mathrm{cm}$.
Q.2.B Solve any TWO of the following:

1) In $\triangle P Q R$, point $S$ is the midpoint of side QR . If $\mathrm{PQ}=11, \mathrm{PR}=17, \mathrm{PS}=13$, find QR .

2) Radius of a circle is 10 cm . Measure of an arc of the circle is $54^{\circ}$. Find the area of the sector associated with the arc and length of the arc. $(\pi=3.14)$
3) $\square$ MRPN is cyclic, $\angle \mathrm{R}=(5 \mathrm{x}-13)^{\circ}, \angle \mathrm{N}=(4 \mathrm{x}+4)^{\circ}$. Find measures of $\angle \mathrm{R}$ and $\angle \mathrm{N}$.
Q. 3 Solve any THREE of the following:
4) In the given figure, a toy made from a hemisphere, a cylinder and a cone is shown. Find the total area of the toy. (Express your answer in terms of $\pi$ )

5) In the adjoining figure, bisectors of $\angle B$ and $\angle C$ of $\triangle A B C$ intersect each other in point $X$. Line AX intersects side BC in point $\mathrm{Y} . \mathrm{AB}=5, \mathrm{AC}=4$.
$B C=6$, then find $\frac{A X}{X Y}$.

6) Prove that: $\frac{\tan \theta}{\sec \theta-1}=\frac{\tan \theta+\sec \theta+1}{\tan \theta+\sec \theta-1}$.
7) In the adjoining figure, line $P R$ touches the circle at point $Q$. Answer the following questions with the help of the figure.
i) What is the sum of $\angle \mathrm{TAQ}$ and $\angle \mathrm{TSQ}$ ?
ii) Find the angles which are congruent to $\angle \mathrm{AQP}$.
iii) Which angles are congruent to $\angle \mathrm{QTS}$ ?
iv) $\angle \mathrm{TAS}=65^{\circ}$, find the measures of $\angle \mathrm{TQS}$ and $\operatorname{arc} \mathrm{TS}$.

Q. 4 Solve any ONE of the following
8) Through the mid point $M$ of the side $C D$ of parallelogram $A B C D$, the line $B M$ is drawn intersecting AC in L and AD produced in E . Prove that $\mathrm{EL}=2 \mathrm{BL}$.

9) $\quad \triangle P Q R$ is a right angled triangle, right angled at $Q$ such that $Q R=b$ and $A(\triangle P Q R)=a$. If $Q N \perp$ PR then show that $\mathrm{QN}=\frac{2 \mathrm{a} \cdot \mathrm{b}}{\sqrt{\mathrm{b}^{4}+4 \mathrm{a}^{2}}}$

Q. 5 Solve any ONE of the follwing:
10) Given: $\triangle \mathrm{PQR} \sim \triangle \mathrm{PST}$ such that $\frac{\mathrm{PR}}{\mathrm{PT}}=\frac{3}{5} \& \mathrm{PQ}=7.3 \mathrm{~cm} \& \mathrm{PR}=6.5 \mathrm{~cm} \& \angle \mathrm{RPQ}=70^{\circ}$ Construct $\triangle \mathrm{PQR}$ and then construct $\triangle \mathrm{PST}$ by dividing seg PQ in 3 equal parts and then finding out position of point $S$ on line $P Q$ such that $P-Q-S$ and $\frac{P Q}{P S}=\frac{3}{5}$
11) If $\sin (A+B+C)=1 \cdot \tan (A-B)=\frac{1}{\sqrt{3}}, \cos (A+C)=\frac{1}{2}$, then find the values of $A, B$ and $C$. using the values of trigonometric ratios at angles $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and $90^{\circ}$.
