Q.1.A Choose the correct alternative.

1) A
2) A
3) A
Q.1.B Solve any TWO of the following:
4)

Rough Figure

Steps of Construction:

i) With centre P , draw a circle of radius 3.2 cm .
ii) Take any point M on the circle and draw ray PM .
iii) Draw line $l \perp$ ray PM at point M .

Line l is the required tangent to the circle at point M .
2) $\quad \operatorname{seg} A D \| \operatorname{seg} B C$ and
seg BD is their transversal[Given]
$\therefore \angle \mathrm{DBC} \cong \angle \mathrm{BDA} \quad \ldots . .$. .[Alternate angles]
$\therefore \angle \mathrm{PBC} \cong \angle \mathrm{PDA} \quad \ldots \ldots .$. (i) $[\mathrm{D}-\mathrm{P}-\mathrm{B}]$
In $\triangle \mathrm{PBC}$ and $\triangle \mathrm{PDA}$,
$\angle \mathrm{PBC} \cong \angle \mathrm{PDA} \quad$. [From (i)
$\angle \mathrm{BPC} \cong \angle \mathrm{DPA} \quad$. [Vertically opposite angles]
$\therefore \triangle \mathrm{PBC} \sim \triangle \mathrm{PDA} \quad \ldots$. [AA test of similarity]
$\therefore \frac{\mathrm{BP}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{AP}} \quad \ldots \ldots \ldots$.[Corresponding sides of similar triangles]
$\therefore \frac{\mathrm{AP}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{BP}}$
.........[By alternendo]
3) Slope of line $\mathrm{AB}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{1-(-1)}{0-(1)}=\frac{1+1}{0+1}=2$

Slope of line $B C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{1-0}=2$
\therefore The slopes of lines AB and BC are equal.
\therefore line $\mathrm{AB} \|$ line BC
Also, point B is common to both the lines.
\therefore Both lines are the same.
\therefore Points A, B and C are collinear.
Q.2A Complete the any TWO of the following activities:

1) $\quad \ln \triangle A B C$, ray $B D$ bisects $\angle B . \quad . . .[$ Given]
$\therefore \quad \frac{A B}{B C}=\frac{A D}{D C}$
...(i) Angle bisector theorem]
In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$... [Given]
$\therefore \quad \frac{A E}{E B}=\frac{A D}{D C}$
...(ii) [Basic proportionality theorem]
$\therefore \quad \frac{A B}{B C}=\frac{\triangle \mathrm{AE}}{\mathrm{EB}}$
...[From (i) and.(ii)]

2)	If PQ \\|\| RS and $\mathrm{P}(1,-2), \mathrm{Q}(5,2), \mathrm{R}(3, \mathrm{k})$ and $\mathrm{S}(\mathrm{k},-5)$. Complete the following activity to find value of k. $\begin{align*} \therefore \text { Slope of } \mathrm{PQ} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2}{5-5}-\frac{-2}{51} \\ & =\frac{2+2}{5-1}=\frac{4}{4}=1 \tag{i} \end{align*}$ $\begin{align*} \text { Slope of RS } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-k}{\boxed{k}-3} \\ & =\frac{-5-k}{k k-3} \tag{ii} \end{align*}$ But slope of $P Q=$ slope of $R S$ $(\because$ parallel lines have equal slopes) $\begin{aligned} & \therefore & 1 & =\frac{-5-k}{k-3} \\ & \therefore & 1(k-3) & =-5-k \\ & \therefore & k-3 & =-5-k \\ & \therefore & k+k & =-5+3 \\ & \therefore & 2 k & =-2 \\ & \therefore & k & =\frac{-2}{2} \\ & \therefore & & k \end{aligned}$
3)	
Q.2.B	Solve any TWO of the following:
1)	Suppose $\square \mathrm{ABCD}$ is a rectangle in which $\mathrm{BC}=16 \mathrm{~cm}$. Area of $\square \mathrm{ABCD}=\mathrm{AB} \times \mathrm{BC}$ $\begin{aligned} \therefore 192 & =\mathrm{AB} \times 16 \\ \therefore \mathrm{AB} & =\frac{192}{16} \\ & =12 \mathrm{~cm} \end{aligned}$ Now, in $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$ [Angle of a rectangle] $\begin{aligned} \therefore \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\ & =12^{2}+16^{2} \\ & =144+256 \\ & =400 \\ \therefore \mathrm{AC} & =\sqrt{400} \\ & =20 \mathrm{~cm} \end{aligned}$ [Pythagoras theorem] [Taking square root of both sides] \therefore The diagonal of the rectangle is 20 cm .

2)

Steps of construction:

i) Draw a circle of radius 3.6 cm and take any point K on it.
ii) Draw chord BK of any length and an inscribed $\angle \mathrm{BAK}$ of any measure.
iii) By taking A as centre and any convenient distance on compass draw an arc intersecting the arms of $\angle B A K$ in points P and Q.
iv) With K as centre and the same distance in the compass, draw an arc intersecting the chord BK at point S.
v) Taking radius equal to PQ and S as centre, draw an arc intersecting the previously drawn arc.

Name the point of intersecting as R.
vi) Draw line RK.

Line RK is the required tangent to the circle.
3) \quad Given: Radius $(\mathrm{R})=6 \mathrm{~cm}$, area of sector $=15 \pi \mathrm{~cm}^{2}$
To find: i) Measure of the $\operatorname{arc}(\theta)$,
ii) Length of the $\operatorname{arc}(l)$

Area of sector $=\frac{\theta}{360} \times \pi r^{2}$
$\therefore 15 \pi=\frac{\theta}{360} \times \pi \times 6^{2}$
$\therefore 15 \pi=\frac{\theta}{360} \times \pi \times 36$
$\therefore 15=\frac{\theta}{10}$
$\therefore \theta=150^{\circ}$
Also. area of sector $=\frac{l \times r}{2}$
$\therefore 15 \pi=\frac{l \times 6}{2}$
$\therefore l=\frac{15 \pi \times 2}{6}=5 \pi \mathrm{~cm}$
\therefore The measure of the arc and the length of the arc are 150° and $5 \pi \mathrm{~cm}$ respectively.
Q. 3 Solve any THREE of the following:

1) i) $\mathrm{MT}=9 \mathrm{~cm} \quad \ldots \ldots \ldots \ldots$. [Radius of the bigger circle]
ii) $\mathrm{MT}=\mathrm{MN}+\mathrm{NT} \quad \ldots \ldots \ldots .[\mathrm{M}-\mathrm{N}-\mathrm{T}]$
$\therefore 9=\mathrm{MN}+2.5$
$\therefore \mathrm{MN}=9-2.5$
$\therefore \mathbf{M N}=\mathbf{6 . 5} \mathbf{~ c m}$
iii) seg MR is a tangent to the smaller circle and NS is its radius.
$\therefore \angle \mathrm{NSM}=90^{\circ}$
[Tangent theorem]
iv) In $\triangle \mathrm{NSM}, \angle \mathrm{NSM}=90^{\circ}$
$\therefore \mathrm{MN}^{2}=\mathrm{NS}^{2}+\mathrm{MS}^{2}$
[Pythagoras theorem]
$\therefore 6.5^{2}=2.5^{2}+\mathrm{MS}^{2}$
$\therefore \mathrm{MS}^{2}=6.5^{2}-2.5^{2}$

$$
=(6.5+2.5)(6.5-2.5)
$$

$=(6.5+2.5)(6.5-2.5)$ $\left[\because a^{2}-b^{2}-=(a+b)(a-b)\right]$

$$
=9 \times 4=36
$$

$\therefore \mathrm{MS}=\sqrt{36}$
[Taking square root of both sides]
$=6 \mathrm{~cm}$
But, $\mathrm{MR}=\mathrm{MS}+\mathrm{SR}$ \qquad [M - $\mathrm{S}-\mathrm{R}$)
$\therefore \mathrm{SR}=9-6$
$\therefore \mathrm{SR}=3 \mathrm{~cm}$
Now, $\frac{\mathrm{MS}}{\mathrm{SR}}=\frac{6}{3}=\frac{2}{1}$
$\therefore \frac{\mathrm{MS}}{\mathrm{SR}}=\mathbf{2 : 1}$

2) Given: For the conical water jug,
radius $(\mathrm{r})=3.5 \mathrm{~cm}$, height $(\mathrm{h})=10 \mathrm{~cm}$
For the cylindrical water pot,
Radius $(\mathrm{R})=7 \mathrm{~cm}$, height $(\mathrm{H})=10 \mathrm{~cm}$
To find: Number of jugs of water the cylindrical pot can hold.
Volume of conical jug $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 3.5^{2} \times 10 \\
& =\frac{1}{3} \times 3.5^{2} \times 10 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of cylindrical pot $=\pi \mathrm{R}^{2} \mathrm{H}$

$$
\begin{aligned}
& =\pi \times 7^{2} \times 10 \\
& =49 \times 10 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Number of jugs $=\frac{\text { Volume of cylindrical pot }}{\text { Volume of conical jug }}$

$$
\begin{aligned}
& =\frac{49 \times 10 \pi}{\frac{1}{3} \times 3.5^{2} \times 10 \pi}=\frac{49 \times 3}{3.5 \times 3.5} \\
& =\frac{49 \times 3 \times 100}{35 \times 35}=12
\end{aligned}
$$

\therefore The cylindrical pot can hold 12 jugs of water.

3) Let $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $P(x, y)$ be the given points.

Here, $x_{1}=8, y_{1}=9, x_{2}=1, y_{2}=2, x=k, y=7$
\therefore By section formula,
$\mathrm{y}=\frac{\mathrm{my}_{2}+\mathrm{ny} \mathrm{y}_{1}}{\mathrm{~m}+\mathrm{n}}$
$\therefore 7=\frac{2 \mathrm{~m}+9 \mathrm{n}}{\mathrm{m}+\mathrm{n}}$
$\therefore 7 \mathrm{~m}+7 \mathrm{n}=2 \mathrm{~m}+9 \mathrm{n}$
$\therefore 5 \mathrm{~m}=2 \mathrm{n}$
$\therefore \frac{\mathrm{m}}{\mathrm{n}}=\frac{2}{5}$
$\therefore \mathrm{m}=2, \mathrm{n}=5$
$\mathrm{x}=\frac{\mathrm{mx} \mathrm{x}_{2}+\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}$
$\therefore \mathrm{k}=\frac{2(1)+5(8)}{2+5}=\frac{2+40}{7}=\frac{42}{7}=6$
\therefore Point P divides seg $A B$ in the ratio $2: 5$, and the value of k is 6 .
4) Proof: Diagonals AC and BD intersect at point M.
$\therefore \mathrm{M}$ is the midpoint of diagonals AC and BD .
$\therefore \mathrm{AM}=\frac{1}{2} \mathrm{AC}$, and $\mathrm{MD}=\frac{1}{2} \mathrm{BD}$
........[Diagonals of a parallelogram bisect each other]

In $\triangle \mathrm{ABD}$,
M is the midpoint of BD .
$\therefore \mathrm{AB}^{2}+\mathrm{AD}^{2}=2 \mathrm{AM}^{2}+2 \mathrm{MD}^{2}$ [Apollonius theorem]
$\therefore \mathrm{AB}^{2}+\mathrm{AD}^{2}=2\left(\frac{1}{2} \mathrm{AC}\right)^{2}+2\left(\frac{1}{2} \mathrm{BD}\right)^{2}$
........ [From (i)]
$\therefore \mathrm{AB}^{2}+\mathrm{AD}^{2}=\frac{1}{2} \mathrm{AC}^{2}+\frac{1}{2} \mathrm{BD}^{2}$

	$\begin{align*} & \therefore 2 \mathrm{AB}^{2}+2 \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2} \\ & \therefore \mathrm{AB}+\mathrm{AB}^{2}+\mathrm{AD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2} \quad \ldots \ldots . .[\text { (ii) } \tag{ii}\\ & \mathrm{But}^{2} \mathrm{AB}=\mathrm{CD} \text { and } \mathrm{BC}=\mathrm{AD} \quad \ldots \ldots \ldots .[\text { Opposite sides of a parallelogram }] \\ & \therefore \mathbf{A C}^{\mathbf{2}}+\mathbf{B D}^{2}=\mathbf{A B}^{2}+\mathbf{B C}^{\mathbf{2}}+\mathbf{C D}^{\mathbf{2}}+\mathbf{A D}^{2} \quad \ldots \ldots .[\text { From (ii) and (iii) }] \end{align*}$
Q. 4	Solve any ONE of the following
1)	Let $1+\sin x=m$ $\begin{aligned} \text { L.H.S. } & =\frac{1+\sin x-\cos x}{1+\sin x+\cos x}+\frac{1+\sin x+\cos x}{1+\sin x-\cos x} \\ & =\frac{m-\cos x}{m+\cos x}+\frac{m+\cos x}{m-\cos x} \\ & =\frac{(m-\cos x)^{2}+(m+\cos x)^{2}}{(m+\cos x(m-\cos x)} \\ & =\frac{m^{2}-2 m \cos x+\cos ^{2} x+m^{2}+2 m \cos x+\cos ^{2} x}{m^{2}-\cos ^{2} x} \\ & =\frac{2 m^{2}+2 \cos ^{2} x}{m^{2}-\cos ^{2} x}=\frac{2\left(m^{2}+\cos ^{2} x\right)}{\left(m^{2}-\cos ^{2} x\right)} \\ & =\frac{2\left[(1+\sin x)^{2}+\cos ^{2} x\right]}{(1+\sin x)^{2}-\cos ^{2} x}=\frac{2\left(1+2 \sin x+\sin ^{2} x+\cos ^{2} x\right)}{1+2 \sin x+\sin ^{2} x-\cos ^{2} x} \\ & =\frac{2(1+2 \sin x+1)}{1-\cos ^{2} x+2 \sin x+\sin ^{2} x}=\frac{2(2+2 \sin x)}{\sin ^{2} x+2 \sin x \sin ^{2} x} \\ & =\frac{2 \times 2(1+\sin x)}{2 \sin x+2 \sin ^{2} x}=\frac{2 \times 2(1+\sin x)}{2 \sin x(1+\sin x)} \\ & =\frac{2}{\sin x} \\ & =2 \operatorname{cosec} x=R . H . S . \end{aligned} \begin{aligned} \therefore \frac{1+\sin x-\cos x}{1+\sin x+\cos x}+\frac{1+\sin x+\cos x}{1+\sin x-\cos x}=\mathbf{2} \operatorname{cosec} x \end{aligned}$
2)	Construction: Draw seg AD. In $\triangle \mathrm{ADB}$,
Q. 5	Solve any ONE of the following
1)	Given: Actual distance between the places A \& B is 225 km . In a map this distance is denoted by segment of length 2.5 cm . In same map distance between places A \& C $=2.5 \mathrm{~cm}$. To find: actual distance between places A \& C. In given map, scale is same. Actual distance $\therefore \frac{225 \times 100000}{2.5}=\frac{\text { between A \& } C}{4.2}$

	$\begin{aligned} & \therefore \frac{225 \times 100000 \times 10 \times 42}{25 \times 10}=\text { Actual distance between A \& C } \\ & \begin{aligned} & \therefore 378 \times 100000=\text { Actual distance between A \& C } \\ & \therefore \text { Actual distance between A \& C } \\ &=378 \times 10000 \mathrm{~cm} \\ &=378 \mathrm{~km} . \end{aligned} \end{aligned}$
2)	Suppose $\triangle \mathrm{ABC}$ is an isosceles triangle. $\therefore \mathrm{AB}=\mathrm{AC}=13 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ AD is the median and G is the centroid. $\therefore \mathrm{D}$ is the midpoint of side BC . $\therefore \mathrm{DC}=\frac{1}{2} \mathrm{BC}=\frac{1}{2} \times 10=5 \mathrm{~cm}$ Now, $\mathrm{AB}^{2}+\mathrm{AC}^{2}=2 \mathrm{AD}^{2}+2 \mathrm{DC}^{2}$ [Apollonius theorem] $\begin{aligned} & \therefore 13^{2}+13^{2}=2 \mathrm{AD}^{2}+2(5)^{2} \\ & \therefore 2 \times 13^{2}=2 \mathrm{AD}^{2}+2 \times 25 \\ & \therefore 169=\mathrm{AD}^{2}+25 \\ & \therefore \mathrm{AD}^{2}=169-25 \\ & \therefore \mathrm{AD}^{2}=144 \\ & \therefore \mathrm{AD}=\sqrt{144}=12 \mathrm{~cm} \end{aligned}$ \qquad [Dividing both sides by 2] We know that, the centroid divides the median in the ratio $2: 1$ $\therefore \frac{\mathrm{AG}}{\mathrm{GD}}=\frac{2}{1}$ $\therefore \frac{\mathrm{GD}}{\mathrm{GG}}=\frac{1}{2}$ \qquad [By invertendo] $\therefore \frac{G D+A G}{A G}=\frac{1+2}{2}$ \qquad [By componendo] $\therefore \frac{\mathrm{AD}}{\mathrm{AG}}=\frac{3}{2}$ \qquad [$\mathrm{A}-\mathrm{G}-\mathrm{D}]$ $\therefore \frac{12}{\mathrm{AG}}=\frac{3}{2}$ $\therefore \mathrm{AG}=\frac{12 \times 2}{3}=8 \mathrm{~cm}$ \therefore The distance between the vertex opposite to the base and the centroid is $\mathbf{8} \mathbf{~ c m}$.

