Q.1A. Choose the correct alternative.
1)

C
2) C
3) B
4) C
Q.1.B Solve any TWO of the following:

1) Given: $\mathrm{A}(\mathrm{P}-\mathrm{ABC})=154 \mathrm{~cm}^{2}$, radius $(\mathrm{r})=14 \mathrm{~cm}$
i) $\mathrm{A}(\mathrm{P}-\mathrm{ABC})=\frac{\theta}{360} \times \pi \mathrm{r}^{2}$
$\therefore 154=\frac{\theta}{360} \times \frac{22}{7} \times 14^{2}$
$\therefore \theta=\frac{154 \times 360 \times 7}{22 \times 14^{2}}=90^{\circ}$
$\therefore \angle \mathrm{APC}=90^{\circ}$
ii) $l(\operatorname{arc} \mathrm{ABC})=\frac{\theta}{360} \times 2 \pi \mathrm{r}$

$$
=\frac{90}{360} \times 2 \times \frac{22}{7} \times 14
$$

$\therefore l(\operatorname{arc} A B C)=22 \mathrm{~cm}$
2) Suppose $A B C D$ is the given quadrilateral.
\therefore Slope of diagonal $\mathrm{AC}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}=\frac{-3-7}{0-1}=\frac{-10}{-1}=10$
Slope of diagonal BD $=\frac{3-3}{-3-6}=\frac{0}{-9}=0$
\therefore The slopes of the diagonals of the quadrilateral are 10 and $\mathbf{0}$.
3) Let AB represent the height of the tree, and

Point C represent the position of the boy.
$B C=60 \mathrm{~m}$
Angle of elevation
$=\angle \mathrm{ACB}=60^{\circ}$
In right angled $\triangle \mathrm{ABC}$,
$\tan 60^{\circ}=\frac{A B}{B C}$
$\therefore \sqrt{3}=\frac{\mathrm{AB}}{60}$
$\therefore \mathrm{AB}=60 \sqrt{3}=60 \times 1.73$
$\therefore \mathrm{AB}=103.80$
\therefore The height of the tree is 103.80 m .

Q.2A Complete the any TWO of the following activities:
1)
\therefore Slope of line $\ell=\frac{\boxed{-1}-3}{\frac{-3}{-1}-1}=\frac{-4}{\boxed{-4}}=\frac{-1}{1}$
(1/2 mark)
Slope of line $m=\frac{-2--3}{0-5}=\frac{-5}{-5}=\frac{1}{1}$
Slope of line $n=\frac{\boxed{-1}-1}{4-6}=\frac{-2}{\boxed{-2}-6}=\frac{1}{1}$

From this we can verify that \qquad lines
have equal slopes.
2) In $\triangle L M N, M N$ is the base and $L P$ is the height.

In $\triangle \mathrm{DMN}, \mathrm{MN}$ is the base and DQ is the height.
$\therefore \frac{\mathrm{A}(\triangle \mathrm{LMN})}{\mathrm{A}(\triangle \mathrm{DMN})}=\frac{\mathrm{MN} \times \mathrm{LP}}{\mathrm{MN} \times \mathrm{DQ}}$
... [The ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]
$\therefore \quad \frac{\mathrm{A}(\triangle \mathrm{LMN})}{\mathrm{A}(\triangle \mathrm{DMN})}=\frac{\mathrm{LP}}{\mathrm{DQ}}$
3) Let the radius of the circle be r.
line l is the tangent to the circle and
seg OP is the radius.
$\therefore \quad \operatorname{seg} \mathbf{O P} \perp$ line l
...[Given]
chord RS || line l ...[Tangent theorem]
...[Given]
$\therefore \quad$ seg $\mathrm{OP} \perp$ chord RS

$$
\begin{aligned}
\therefore \quad \mathrm{QS} & =\frac{1}{2} \quad \mathbf{R S} \quad \ldots\left[\begin{array}{l}
\text { Perpendicular drawn from } \\
\text { the centre of the circle to } \\
\text { the chord bisects the chord }
\end{array}\right] \\
& =\frac{1}{2} \times 12 \\
& =6 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also, } \mathrm{OQ}=\frac{1}{2} \mathrm{OP} \quad \ldots[\mathrm{Q} \text { is the midpoint of } \mathrm{OP}] \\
& =\frac{1}{2} r \\
& \text { In } \triangle \mathrm{OQS}, \angle \mathrm{OQS}=90^{\circ} \\
& \therefore \quad \mathrm{OS}^{2}=\mathbf{O Q}^{2}+\mathrm{QS}^{2} \\
& \text {...[seg OP } \perp \text { chord RS] } \\
& \text { Pythagoras theorem } \\
& \therefore \quad r^{2}-\frac{1}{4} r^{2}=36 \\
& \therefore \quad \frac{3}{4} r^{2}=36 \\
& \therefore \quad r^{2}=\frac{36 \times 4}{3} \\
& \therefore \quad r^{2}=48 \\
& \therefore \quad \mathrm{r}=\sqrt{48} \quad \ldots \text { [Taking square root of both sides] } \\
& =4 \sqrt{3} \mathrm{~cm} \\
& \therefore \quad \text { The radius of the given circle is } 4 \sqrt{3} \mathrm{~cm} \text {. }
\end{aligned}
$$

Q.2.B Solve any TWO of the following:

1) In $\triangle P Q R$, point S is the midpoint of side $Q R$.
........[Given]
$\therefore \mathrm{PQ}^{2}+\mathrm{PR}^{2}=2 \mathrm{PS}^{2}+2 \mathrm{SR}^{2}$
[Apollonius theorem]
$\therefore 11^{2}+17^{2}=2(13)^{2}+2 \mathrm{SR}^{2}$
$\therefore 121+289=2(169)+2$ SR 2
$\therefore 410=338+2$ SR 2
$\therefore 2 \mathrm{SR}^{2}=410-338$
$\therefore 2 \mathrm{SR}^{2}=72$
$\therefore \mathrm{SR}^{2}=\frac{72}{2}=36$
$\therefore \mathrm{SR}=\sqrt{36}$

$$
=6 \text { units }
$$

Now, $\mathrm{QR}=2$ SR [S is the midpoint of QR]

$$
=2 \times 6
$$

$\therefore \mathrm{QR}=12$ units
2) \quad Given : Radius (r) $=10 \mathrm{~cm}$, Measure of the $\operatorname{arc}(\theta)=54^{\circ}$

To find: i) Area of the sector, ii) length of arc
Area of sector $=\frac{\theta}{360} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{54}{360} \times 3.14 \times(10)^{2}=\frac{3}{20} \times 3.14 \times 100 \\
& =3 \times 3.14 \times 5=47.1 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of sector $=\frac{l \times r}{2}$
$\therefore 47.1=\frac{l \times 10}{2}$
$\therefore l=\frac{47.1 \times 2}{10}=\frac{94.2}{10}=9.42 \mathrm{~cm}$
\therefore The area of the sector and length of arc is $47.1 \mathrm{~cm}^{2}$ and 9.42 cm respectively.
3) $\square \mathrm{MRPN}$ is a cyclic quadrilateral.
$\therefore \angle \mathrm{R}+\angle \mathrm{N}=180^{\circ}$
.....[Theorem of cyclic quadrilateral]
$\therefore 5 \mathrm{x}-13+4 \mathrm{x}+4=180$
$\therefore 9 x-9=180$
$\therefore 9 \mathrm{x}=189$
$\therefore \mathrm{x}=\frac{189}{9}$
$\therefore \mathrm{x}=21$

$$
\begin{aligned}
\therefore \angle \mathrm{R} & =5 \mathrm{x}-13 \\
& =5 \times 21-13=105-13=92^{\circ} \\
\angle \mathrm{N} & =4 \mathrm{x}+4 \\
& =4 \times 21+4=84+4=88^{\circ}
\end{aligned}
$$

$\therefore \mathbf{m} \angle \mathbf{R}=92^{\circ}$ and $\mathbf{m} \angle \mathbf{N}=\mathbf{8 8}^{\circ}$

Q. 3 Solve any THREE of the following:

1) Given: For the conical part,

Height (h) $=4 \mathrm{~cm}$, radius $(\mathrm{r})=3 \mathrm{~cm}$
For the cylindrical part,
Height $(\mathrm{H})=40 \mathrm{~cm}$, radius $(\mathrm{r})=3 \mathrm{~cm}$
For the hemispherical part,
Radius (r) $=3 \mathrm{~cm}$
To find: Total area of the toy.
Slant height of cone $(l)=\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}=\sqrt{4^{2}+3^{2}}$

$$
=\sqrt{16+9}=\sqrt{25}=5 \mathrm{~cm}
$$

\therefore Curved surface area of cone $=\pi r l$

$$
=\pi \times 3 \times 5=15 \pi \mathrm{~cm}^{2}
$$

Curved surface area of cylinder $=2 \pi \mathrm{rH}$

$$
=2 \times \pi \times 3 \times 40=240 \pi \mathrm{~cm}^{2}
$$

Curved surface area of hemisphere $=2 \pi r^{2}$

$$
=2 \times \pi \times 3^{2}=18 \pi \mathrm{~cm}^{2}
$$

Total area of the toy
$=$ Curved surface area of cone + Curved surface area of cylinder + Curved surface area of hemisphere
$=15 \pi+240 \pi+18 \pi$
$=273 \pi \mathrm{~cm}^{2}$
\therefore The total area of the toy is $273 \pi \mathrm{~cm}^{2}$.
2) Let The va;lue of BY be x.
$B C=B Y+Y C$
$\therefore 6=\mathrm{x}+\mathrm{YC}$
$\therefore \mathrm{YC}=6-\mathrm{x}$
In $\triangle \mathrm{BAY}$, ray BX bisects $\angle \mathrm{B}$. [Given]
$\therefore \frac{\mathrm{AB}}{\mathrm{BY}}=\frac{\mathrm{AX}}{\mathrm{XY}}$
........[Angle bisector theorem]
$\therefore \frac{5}{\mathrm{x}}=\frac{\mathrm{AX}}{\mathrm{XY}}$
Also, in \triangle CAY, ray CX bisects $\angle \mathrm{C} \ldots \ldots$. [Given]
$\therefore \frac{\mathrm{AC}}{\mathrm{YC}}=\frac{\mathrm{AX}}{\mathrm{XY}}$ [Angle bisector theorem]
$\therefore \frac{4}{6-\mathrm{X}}=\frac{\mathrm{AX}}{\mathrm{XY}}$
$\therefore \frac{4}{6-\mathrm{x}}=\frac{5}{\mathrm{x}}$
$\therefore 4 \mathrm{x}=5(6-\mathrm{x})$
$\therefore 4 \mathrm{x}=30-5 \mathrm{x}$
$\therefore 9 x=30$
$\therefore \mathrm{x}=\frac{30}{9}=\frac{10}{3}$
Now, $\frac{A X}{X Y}=\frac{5}{\left(\frac{10}{3}\right)}$
$=\frac{5 \times 3}{10}$
$\ldots[$ [Substituting the value of x in equation (i)]
$\therefore \frac{\mathrm{AX}}{\mathrm{XY}}=\frac{3}{2}$
3) L.H.S. $=\frac{\tan \theta}{\sec \theta-1}$

$$
\begin{aligned}
& =\frac{\tan \theta}{\sec \theta-1} \times \frac{\sec \theta+1}{\sec \theta+1} \\
& =\frac{\tan \theta(\sec \theta+1)}{\sec ^{2} \theta-1} \\
& =\frac{\tan \theta(\sec \theta+1)}{\tan ^{2} \theta} \\
& =\frac{\sec \theta+1}{\tan \theta}
\end{aligned} \quad \ldots \ldots \ldots[\text { [On rationalising the denominator] }
$$

Now, $\frac{\tan \theta}{\sec \theta-1}=\frac{\sec \theta+1}{\tan \theta}$
\therefore By theorem on equal ratios,

$$
\begin{aligned}
\frac{\tan \theta}{\sec \theta-1}=\frac{\sec \theta+1}{\tan \theta} & =\frac{\tan \theta+(\sec \theta+1)}{\sec \theta-1+(\tan \theta)} \\
& =\frac{\tan \theta+\sec \theta+1}{\tan \theta+\sec \theta-1} \\
& =\text { R.H.S. }
\end{aligned}
$$

$\therefore \frac{\boldsymbol{\operatorname { t a n }} \theta}{\boldsymbol{\operatorname { s e c } \theta - 1}}=\frac{\boldsymbol{\operatorname { t a n }} \theta+\boldsymbol{\operatorname { s e c }} \theta+1}{\boldsymbol{\operatorname { t a n }} \theta+\boldsymbol{\operatorname { s e c }} \theta-1}$
4) Given: \square ABCD is a parallelogram. M is the midpoint of side CD.

To prove: EL = 2BL
i) $\square \mathrm{AQST}$ is a cyclic quadrilateral \qquad
$\therefore \angle \mathrm{TAQ}+\angle \mathrm{TSQ}=180^{\circ} \quad$ [Theorem of cyclic quadrilateral]
ii) line PR is the tangent and seg AQ is the secant
......[Given]
$\therefore \angle \mathrm{AQP}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{AQ}) \quad \ldots \ldots \ldots$. [Theorem of angle between tangent and secant]
But, $\angle \mathrm{ASQ}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{AQ}) \quad \ldots \ldots$. [Inscribed angle theorem]
$\therefore \angle \mathrm{AQP} \cong \angle \mathrm{ASQ}$
Similarly, we can prove that,
$\angle A Q P \cong \angle A T Q$
iii) $\angle \mathrm{QTS}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{QS}) \quad \ldots \ldots .$. [Inscribed angle theorem]

But, $\angle \mathrm{SQR}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{QS}) \quad \ldots \ldots$. [Theorem of angle between tangent and secant]
$\therefore \angle \mathrm{QTS} \cong \angle \mathrm{SQR}$
Also, $\angle \mathrm{QTS}=\angle \mathrm{QAS} \quad \ldots . . .[$ [Angles inscribed in the same arc]
iv) \angle TQS $=\angle$ TAS $\quad \ldots \ldots$. [Angles inscribed in the same arc]
$\therefore \angle \mathrm{TQS}=65^{\circ}$
Now, $\angle \mathrm{TQS}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{TS}) \quad \ldots .$. [Inscribed angle theorem]
$\therefore 65^{\circ}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{TS})$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{TS})=65^{\circ} \times 2$
$\therefore \mathrm{m}(\operatorname{arc} \mathrm{TS})=130^{\circ}$

Q. 4 Solve any ONE of the following

1) $\square \mathrm{ABCD}$ is a parallelogram
side AE || side BC on transversal BE
$\angle A E B \cong \angle C B E$
In $\triangle \mathrm{ALE}$ and $\triangle \mathrm{CLB}$,
$\angle \mathrm{AEL} \cong \angle \mathrm{CBL}$
$\angle \mathrm{ALE} \cong \angle \mathrm{CLB}$
$\therefore \triangle \mathrm{ALE} \sim \Delta \mathrm{CLB}$
$\therefore \frac{\mathrm{EL}}{\mathrm{BL}}=\frac{\mathrm{AE}}{\mathrm{BC}}$
In $\triangle \mathrm{DME}$ and $\triangle \mathrm{BMC}$,
Seg DM $\cong \operatorname{seg} C M$
$\angle \mathrm{DME} \cong \angle \mathrm{CMB}$
$\angle \mathrm{DEM} \cong \angle \mathrm{CBM}$
$\therefore \triangle \mathrm{DME} \cong \triangle \mathrm{BMC}$
$\therefore \mathrm{DE}=\mathrm{BC}$
Also, $\mathrm{AD}=\mathrm{BC}$
[Given]
(i) [Alternate angles]
[From (i) and B-L-E] [Vertically opposite angles]
[By A-A test of similarity]
(ii) [Corresponding sides of similar triangles]
[M is midpoint of DC]
[Vertically opposite angles]
[From (i), B-M-E, A-D-E]
[By S A A test of congruency]
(iii) [c.s.c.t.]
(iv) [Opposite sides of parallelogram]

Now, $\mathrm{AE}=\mathrm{AD}+\mathrm{DE}$
$\therefore A E=B C+B C$
(v) $[\mathrm{A}-\mathrm{D}-\mathrm{E}]$
$\therefore \mathrm{AE}=2 \mathrm{BC}$
$\therefore \frac{\mathrm{AE}}{\mathrm{BC}}=\frac{2}{1}$
$\therefore \frac{\mathrm{EL}}{\mathrm{BL}}=\frac{2}{1}$
(vi)
[From (ii) and (vi)]
2) Consider, $2 \mathrm{ab}=2 \times \mathrm{A}(\triangle \mathrm{PQR}) \times \mathrm{QR}$
$=2 \times\left(\frac{1}{2} \times \mathrm{PR} \times \mathrm{QN}\right) \times \mathrm{QR}$
$\therefore 2 \mathrm{ab}=\mathrm{PR} \times \mathrm{QN} \times \mathrm{QR}$
(i)

Consider, $\mathrm{b}^{4}+4 \mathrm{a}^{2}$
$=\mathrm{QR}^{4}+4[\mathrm{~A}(\Delta \mathrm{PQR})]^{2}$
$=\mathrm{QR}^{4}+4\left[\frac{1}{2} \times \mathrm{PQ} \times \mathrm{QR}\right]^{2}$
$=\mathrm{QR}^{4}+4 \times \frac{1}{4} \times \mathrm{PQ}^{2} \times \mathrm{QR}^{2}$
$=\mathrm{QR}^{4}+\mathrm{PQ}^{2} \times \mathrm{QR}^{2}$
$\therefore \mathrm{b}^{4}+4 \mathrm{a}^{2}=\mathrm{QR}^{2}\left[\mathrm{QR}^{2}+\mathrm{PQ}^{2}\right]$
$\therefore \frac{\mathrm{b}^{4}+4 \mathrm{a}^{2}}{\mathrm{QR}^{2}}=\mathrm{QR}^{2}+\mathrm{PQ}^{2}$
In $\triangle \mathrm{PQR}$,
$\angle \mathrm{PQR}=90^{\circ}$
$\therefore \mathrm{QR}^{2}+\mathrm{PQ}^{2}=\mathrm{PR}^{2}$
(iii) [By Pythagoras theorem]
[From (ii) and (iii)]
[Taking square root on both sides]
$\therefore \mathrm{b}^{4}+4 \mathrm{a}^{2}=\mathrm{QR}^{2} \times \mathrm{PR}^{2}$
$\therefore \sqrt{\mathrm{b}^{4}+4 \mathrm{a}^{2}}=\sqrt{\mathrm{QR}^{2} \times \mathrm{PR}^{2}}$
(iv)
$\therefore \frac{2 \mathrm{ab}}{\sqrt{\mathrm{b}^{4}+4 \mathrm{a}^{2}}}=\frac{\mathrm{PR} \times \mathrm{QN} \times \mathrm{QR}}{\mathrm{QR} \times P \mathrm{R}}$
[Dividing (i) by (iv)]
$\therefore \mathbf{Q N}=\frac{2 \mathbf{a b}}{\sqrt{\mathbf{b}^{4}+4 \mathbf{a}^{2}}}$

Q. 5 Solve any ONE of the follwing:

1) Given: $\triangle \mathrm{PQR} \sim \Delta \mathrm{PST}$ such that $\frac{\mathrm{PR}}{\mathrm{PT}}=\frac{3}{5}$
$\mathrm{PQ}=7.3 \mathrm{~cm}$ and $\mathrm{PR}=6.5 \mathrm{~cm}$ and $\angle \mathrm{RPQ}=70^{\circ}$ Construct $\triangle \mathrm{PQR}$ and then construct $\triangle \mathrm{PST}$ by dividing seg $P Q$ in 3 equal parts and then finding out position of point S on line $P Q$ such that P
$-\mathrm{Q}-\mathrm{S}$ and $\frac{\mathrm{PQ}}{\mathrm{PS}}=\frac{3}{5}$

Rough Figure:

2) Given: $\sin (A+B+C)=1$

$$
\begin{aligned}
& \tan (\mathrm{A}-\mathrm{B})=\frac{1}{\sqrt{3}} \\
& \cos (\mathrm{~A}+\mathrm{C})=\frac{1}{2}
\end{aligned}
$$

To find: value of A, B \& C
$\sin (A+B+C)=1$
(given)
We know that
$\operatorname{Sin} 90^{\circ}=1$
$\therefore \sin (\mathrm{A}+\mathrm{B}+\mathrm{C})=\sin 90^{\circ}$
$\therefore \mathrm{A}+\mathrm{B}+\mathrm{C}=90^{\circ}$
$\tan (A-B)=\frac{1}{\sqrt{3}}$
We know that

$$
\tan 30^{\circ}=\frac{1}{\sqrt{3}}
$$

$\tan (\mathrm{A}-\mathrm{B})=\tan 30^{\circ}$
$A-B=30^{\circ}$
$\cos (\mathrm{A}+\mathrm{C})=\frac{1}{2}$
We know that
$\cos 60^{\circ}=\frac{1}{2}$
$\therefore \mathrm{A}+\mathrm{C}=60^{\circ}$
From (ii) we get
$\mathrm{B}=\mathrm{A}-30^{\circ}$
From (iii) we get
$\mathrm{C}=60^{\circ}-\mathrm{A}$
Substituting these values in equation (i), we get
$\mathrm{A}+\mathrm{A}-30^{\circ}+60^{\circ}-\mathrm{A}=90^{\circ}$

$$
\begin{aligned}
& A+30^{\circ}=90^{\circ} \\
& A=90^{\circ}-30^{\circ} \\
& A=60^{\circ}
\end{aligned}
$$

From (ii) we get
$\mathrm{B}=\mathrm{A}-30^{\circ}=60^{\circ}-30^{\circ}=30^{\circ}$
$\therefore \mathrm{B}=30^{\circ}$
From (iii) we get
$\mathrm{C}=60^{\circ}-\mathrm{A}=60^{\circ}-60^{\circ}=0^{\circ}$
$\mathrm{C}=0^{\circ}$

