

-4 -4 \therefore Slope of line $\ell =$ 1 (1/2 mark)-5 1 3 Slope of line m =-2 1 5 -5 0 --2 Slope of line n =-2 6 1 From this we can verify that parallel lines have equal slopes. In ALMN, MN is the base and LP is the height. In ΔDMN , MN is the base and DQ is the height. $\frac{A(\Delta LMN)}{A(\Delta DMN)} = \frac{MN \times LP}{MN \times DQ}$... MN × DQ ...[The ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights] $A(\Delta LMN)$ LP ... $A(\Delta DMN)$ DQ CONTRACT OF STREET, ST Let the radius of the circle be r. line l is the tangent to the circle and seg OP is the radius. ...[Given] seg **OP** \perp line *l* ...[Tangent theorem] *.*.. chord RS || line l...[Given] seg OP \perp chord RS ... Perpendicular drawn from $\therefore \qquad \text{QS} = \frac{1}{2} \quad \textbf{RS}$ the centre of the circle to the chord bisects the chord $=\frac{1}{2} \times 12$ = 6 cm

1)

2)

3)

Also, $\boxed{OQ} = \frac{1}{2}$ OP[Q is the midpoint of OP] $=\frac{1}{2}$ r In $\triangle OQS$, $\angle OQS = 90^{\circ}$...[seg OP \perp chord RS] $OS^2 = OQ^2 + QS^2$ Pythagoras theorem \therefore $\mathbf{r}^2 = \left| \left(\frac{1}{2} \mathbf{r} \right)^2 \right| + 6^2$ $\therefore \qquad r^2 = \frac{1}{4}r^2 + 36$ $\therefore \qquad r^2 - \frac{1}{4}r^2 = 36$ $\therefore \quad \frac{3}{4}r^2 = 36$ $\therefore \qquad r^2 = \frac{36 \times 4}{3}$ \therefore $r^2 = 48$ $r = \sqrt{48}$ *:*. ...[Taking square root of both sides] $= 4\sqrt{3}$ cm The radius of the given circle is $4\sqrt{3}$ cm. ... Q.2.B Solve any TWO of the following: In ΔPQR , point S is the midpoint of side QR.[Given] $\therefore PQ^2 + PR^2 = 2 PS^2 + 2 SR^2$ [Apollonius theorem] 1) $\therefore 11^2 + 17^2 = 2 (13)^2 + 2 \text{ SR}^2$ $\therefore 121 + 289 = 2 (169) + 2 \text{ SR}^2$ $\therefore 410 = 338 + 2 \text{ SR}^2$ $\therefore 2 \text{ SR}^2 = 410 - 338$ $\therefore 2 \text{ SR}^2 = 72$ \therefore SR² = $\frac{72}{2}$ = 36 \therefore SR = $\sqrt{36}$[Taking square root of both sides] = 6 units Now, QR = 2 SR [S is the midpoint of QR] $= 2 \times 6$ \therefore QR = 12 units **Given :** Radius (r) = 10 cm, Measure of the arc (θ) = 54° 2) To find: i) Area of the sector, ii) length of arc Area of sector $=\frac{\theta}{360} \times \pi r^2$ $=\frac{54}{360} \times 3.14 \times (10)^2 = \frac{3}{20} \times 3.14 \times 100$ $= 3 \times 3.14 \times 5 = 47.1 \text{ cm}^2$ Area of sector = $\frac{l \times r}{2}$ $\therefore 47.1 = \frac{l \times 10}{\frac{2}{10}}$ $\therefore l = \frac{47.1 \times 2}{10} = \frac{94.2}{10} = 9.42 \text{ cm}$ \therefore The area of the sector and length of arc is 47.1 cm² and 9.42 cm respectively. 3) \square MRPN is a cyclic quadrilateral. $\therefore \angle R + \angle N = 180^{\circ}$[Theorem of cyclic quadrilateral] $\therefore 5x - 13 + 4x + 4 = 180$ $\therefore 9x - 9 = 180$ \therefore 9x = 189 $\therefore \mathbf{x} = \frac{189}{9}$ $\therefore \mathbf{x} = 21$

 $\therefore \angle R = 5x - 13$ $= 5 \times 21 - 13 = 105 - 13 = 92^{\circ}$ $\angle N = 4x + 4$ $= 4 \times 21 + 4 = 84 + 4 = 88^{\circ}$ \therefore m \angle R = 92° and m \angle N = 88° Solve any THREE of the following: Q.3 Given: For the conical part, 1) Height (h) = 4 cm, radius (r) = 3 cmFor the cylindrical part, Height (H) = 40 cm, radius (r) = 3 cmFor the hemispherical part, Radius (r) = 3 cmTo find: Total area of the toy. Slant height of cone (l) = $\sqrt{h^2 + r^2} = \sqrt{4^2 + 3^2}$ $=\sqrt{16+9} = \sqrt{25} = 5 \text{ cm}$ \therefore Curved surface area of cone = $\pi r l$ $=\pi \times 3 \times 5 = 15\pi \text{ cm}^2$ Curved surface area of cylinder = $2\pi rH$ $= 2 \times \pi \times 3 \times 40 = 240\pi \text{ cm}^2$ Curved surface area of hemisphere = $2\pi r^2$ $= 2 \times \pi \times 3^2 = 18\pi \text{ cm}^2$ Total area of the toy = Curved surface area of cone + Curved surface area of cylinder + Curved surface area of hemisphere $= 15\pi + 240\pi + 18\pi$ $= 273\pi \text{ cm}^2$ \therefore The total area of the toy is 273π cm². 2) Let The va; lue of BY be x. BC = BY + YC.....[B-Y-C] $\therefore 6 = x + YC$ \therefore YC = 6 - x In \triangle BAY, ray BX bisects \angle B.[Given] $\therefore \frac{AB}{BY} = \frac{AX}{XY} \qquad[Angle]$ $\therefore \frac{5}{x} = \frac{AX}{XY} \qquad(i)$ Also, in $\triangle CAY$, ray CX bisects $\angle C$ [Given][Angle bisector theorem] $\therefore \frac{AC}{YC} = \frac{AX}{XY}$[Angle bisector theorem] $\frac{6-x}{4}$ XY[From (i)] $\therefore 4x = 5(6 - x)$ $\therefore 4x = 30 - 5x$ \therefore 9x = 30 $\therefore 9x - 50$ $\therefore x = \frac{30}{9} = \frac{10}{3}$ Now, $\frac{Ax}{XY} = \frac{5}{\left(\frac{10}{3}\right)}$ $=\frac{5\times3}{10}$[Substituting the value of x in equation (i)] $\therefore \frac{AX}{XY} = \frac{3}{2}$

3) L.H.S. =
$$\frac{\tan \theta}{\sec \theta - 1}$$

 $\frac{\tan \theta}{\sec \theta - 1}$ $\frac{\sec \theta + 1}{\sec \theta + 1}$ [On rationalising the denominator]
 $\frac{\tan \theta}{\sec \theta - 1}$ $\frac{\sec \theta + 1}{\sec \theta - 1}$
 $\frac{\tan \theta}{\tan \theta} = \frac{\sec \theta + 1}{\tan \theta}$ [$\therefore \sec^2 \theta - 1 = \tan^2 \theta$]
 $\frac{\sec \theta + 1}{\tan \theta}$ $\frac{\sec \theta + 1}{\tan \theta}$
 $\frac{\tan \theta}{\sec \theta - 1}$ $\frac{\tan \theta + (\sec \theta - 1)}{\tan \theta}$ $\frac{\tan \theta + (\sec \theta - 1)}{= \tan \theta + (\sec \theta - 1)}$
 $\frac{\tan \theta}{= \frac{\tan \theta + (\sec \theta - 1)}{= -\frac{\tan \theta + (\csc \theta - 1)}}}}$
4) Given: $\Box ABC Is a parallelogram. M is the midpoint of side CD.
To prove: EL = 2BL
 $(1) (\Box AQS T is a cyclic quadrilateral[Given]$
 $\therefore ∠AQP = \frac{1}{2} m(arc AQ)$ [Inscribed angle theorem]
 $\therefore ∠AQP = \frac{1}{2} m(arc QS)$ [Inscribed angle theorem]
 $\therefore ∠AQP = 2ASQ$
Similarly, we can prove that,
 $\angle AQTS = 2QAS$ [Angles inscribed in the same arc]
 $i) \angle TABC Is a parallelogram [Given]$
 $\therefore dot CSIS = 2TAS$ [Angles inscribed in the same arc]
 $i) \angle TABC IS a parallelogram [Given]$
 $\therefore dat E = 3CBK$ (i) [Aternate angles]
 $\ln AALE and ACLB,$
 $\angle AEL = 2CBL [Vertically opposite angles]$
 $\ln AALE and ACLB,$
 $\angle AAEL = 2CBL [From (i) and B-L-E]$
 $[Vertically opposite angles]$
 $\ln AALE = ABMC$ [From (i) and B-L-E]
 $[Vertically opposite angles]$
 $LDBM E \approx 2CBM$ [Prom (i) $B = A - E$]
 $[Vertically opposite angles]$
 $LDBM E \approx 2CBM$ [Prom (i) $B = M - E$]
 $ABDM E \approx ABMC$ [By A A test of congruency]
 $ADM = \approx ABMC$ [By C, Hower (B)$

Now, AE = AD + DE (v) [A-D-E]
: AE = BC (From (iii), (iv) and (v)]
: AE = 2BC
:
$$\frac{AB}{R} = \frac{7}{4}$$
 (vi)
: $\frac{BE}{R} = \frac{7}{4}$ (vi)
: $\frac{BE}{R} = \frac{7}{4}$ (From (ii) and (vi)]
2) Consider, 2ab = 2 × A(APQR) × QR
: 2ab = PR × QN × QR (i)
Consider, b⁴ + 4a²
= QR⁴ + 4[$\frac{1}{2}$ × PQ × QR²
= QR⁴ + 4[$\frac{1}{2}$ × PQ × QR²
= QR⁴ + 4[$\frac{1}{2}$ × PQ × QR²
= QR⁴ + 42² = QR² (QR² + PQ²)
: $\frac{b^4 + 4a^2}{QR^2} = QR^2 + PQ^2$ (ii)
In APQR,
∠PQR,
∠PQR,
∠PQR,
∠PQR = 90°
: $QR^2 + PQ^2 = PR^2$ (iii) [By Pythagoras theorem]
: $b^4 + 4a^2 = QR^2 QR^2 + PQ^2$ (iii)
In Δ^{PQR} ,
∠PQR,
∠PQR,
∠PQR,
 $\sqrt{b^4 + 4a^2} = QR^2 × PR^2$ [Taking square root on both sides]
: $\sqrt{b^4 + 4a^2} = QR^2 NR^2R$ [Dividing (i) by (iv)]
: $\frac{\sqrt{b^4 + 4a^2}}{\sqrt{b^4 + 4a^2}} = QR^{RXPR}$ [Dividing (i) by (iv)]
: $QR = \frac{2ab}{\sqrt{b^4 + 4a^2}}$ [Dividing (i) by (iv)]
: $QR = \frac{2ab}{\sqrt{b^4 + 4a^2}}$ [Dividing 0 = 70° Construct Δ^{PQR} by dividing seg PQ in 3 equal parts and then finding out position of point S on line PQ such that P
= Q - S and $\frac{PQ}{PQ} = \frac{3}{5}$
Rough Figure: $\frac{1}{PQ} = \frac{1}{3}$

Given: sin (A + B + C) = 1 $\tan(A - B) = \frac{1}{\sqrt{3}}$ $\cos(A + C) = \frac{1}{2}$ To find: value of A, B & C $\sin(A + B + C) = 1$ (given) We know that $\sin 90^{\circ} = 1$ $\therefore \sin (A + B + C) = \sin 90^{\circ}$ $\therefore A + B + C = 90^{\circ}$(i)(given) $\tan(A - B) = \frac{1}{\sqrt{3}}$ We know that $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$ $\tan(A - B) = \tan 30^{\circ}$ $A - B = 30^{\circ}$(ii) $\cos (A + C) = \frac{1}{2}$(given) We know that $\cos 60^{\circ} = \frac{1}{2}$ $\therefore A + C = 60^{\circ}$(iii) From (ii) we get $B = A - 30^{\circ}$ From (iii) we get $C = 60^{\circ} - A$ Substituting these values in equation (i), we get $A + A - 30^{\circ} + 60^{\circ} - A = 90^{\circ}$ $A + 30^{\circ} = 90^{\circ}$ $A = 90^{\circ} - 30^{\circ}$ $A = 60^{\circ}$ From (ii) we get $B = A - 30^{\circ} = 60^{\circ} - 30^{\circ} = 30^{\circ}$ $\therefore |\mathbf{B} = 30^{\circ}$ From (iii) we get $C = 60^{\circ} - A = 60^{\circ} - 60^{\circ} = 0^{\circ}$ $C = 0^{\circ}$

2)